Synthesis of a New Imidazole Amino Acid Ionic Liquid Polymer and Selective Adsorption Performance for Tea Polyphenols
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Reagents
2.2. Apparatus
2.3. Synthesis of Imidazole Ionic Liquid Polymers
2.3.1. Synthesis of ILs monomer ViImCn-L-Pro and (ViIm)2Cn(L-Pro)2
2.3.2. Synthesis of Imidazole Ionic Liquid Copolymers
2.4. Structural Characterization of Ionic Liquid Polymer
2.5. Determination of Polymers’ Yield and Mass Ratio of Ionic Liquids in Polymers
2.6. Optimization of Polymer Synthesis Conditions
2.6.1. Influence of the Ratio of Ionic Liquid and Crosslinking Agent MBA on Adsorption
2.6.2. Influence of Solvents on Adsorption
2.6.3. Influence of Ionic Liquids on Adsorption
2.6.4. Influence of Initiator Amount on Adsorption
2.7. Adsorption Test of TPs
2.7.1. Establishment of Determination Method for TPs
2.7.2. Adsorption Performance Test
3. Results and Discussion
3.1. Characterization of Ionic Liquid Polymers
3.1.1. Infrared Spectroscopic Analysis
3.1.2. Elemental Analysis
3.1.3. TGA-DTG Analysis
3.1.4. Analysis of SEM Surface Structure
3.1.5. Particle size Distribution
3.2. Influence of Synthesis Conditions of Ionic Liquid Polymer on Adsorption Effect
3.2.1. Influence of the Ratio of ILs and MBA on Adsorption
3.2.2. Influence of Solvent Types on Adsorption
3.2.3. Influence of Ionic Liquids on Adsorption
3.2.4. Influence of Amount of Initiator on Adsorption
3.2.5. The Performances of Adsorption and Reuse
3.2.6. FTIR study on Adsorption Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, S.; Feng, G.; Cummings, P.T. Molecular Dynamics Study on the Capacitive Performance of Double-Cationic Ionic Liquid Electrolytes. In Proceedings of the AIChE Annual Meeting, San Francisco, CA, USA, 3–8 November 2013; p. 11. [Google Scholar]
- Cho, W.-J.; Yeom, C.G.; Kim, B.C.; Kim, K.M.; Ko, J.M.; Yu, K.-H. Supercapacitive properties of activated carbon electrode in organic electrolytes containing single- and double-cationic liquid salts. Electrochim. Acta 2013, 89, 807–813. [Google Scholar]
- Zhang, D.Z.; Ren, Y.Y.; Hu, Y.; Li, L.; Yan, F. Ionic liquid/poly(ionic liquid)-based semi-solid state electrolytes for lithium-ion batteries. Chin. J. Polym. Sci. 2020, 38, 506–513. [Google Scholar] [CrossRef]
- Chen, Q.J.; An, Z.S. Synthesis of star polymeric ionic liquids and use as the stabilizers for high internal phase emulsions. Chin. J. Polym. Sci. 2017, 35, 54–65. [Google Scholar] [CrossRef]
- Ye, Y.; Elabd, Y.A. Relative chemical stability of imidazolium-based alkaline anion exchange polymerized ionic liquids. Macromolecules 2011, 44, 8494–8503. [Google Scholar] [CrossRef]
- Shaplov, A.S.; Vlasov, P.S.; Lozinskaya, E.I.; Ponkratov, D.O.; Malyshkina, I.A.; Vidal, F.; Okatova, O.V.; Pavlov, G.M.; Wandrey, C.; Bhide, M.; et al. Polymeric Ionic Liquids. Comparison of Polycations and Polyanions. Macromolecules 2011, 44, 9792–9803. [Google Scholar] [CrossRef]
- Azzaroni, O.; Brown, A.A.; Huck, W.T.S. UCST Wetting Transitions of Polyzwitterionic Brushes Driven by Self. Assoc. Angew. Chem. 2006, 118, 1802–1806. [Google Scholar] [CrossRef]
- Wu, T.; Beyer, F.L.; Brown, R.H.; Moore, R.B.; Long, T.E. Influence of Zwitterions on Thermomechanical Properties and Morphology of Acrylic Copolymers: Implications for Electroactive Applications. Macromolecules 2011, 44, 8056–8063. [Google Scholar] [CrossRef]
- Marcilla, R.; Ochoteco, E.; Pozo-Gonzalo, C. New Organic Dispersions of Conducting Polymers Using Polymeric Ionic Liquids as Stabilizers. Macromol. Rapid Commun. 2005, 26, 1122–1126. [Google Scholar] [CrossRef]
- Marcilla, R.; Pozo-Gonzalo, C.; Rodríguez, J. Use of polymeric ionic liquids as stabilizers in the synthesis of polypyrrole organic dispersions. Synth. Met. 2006, 156, 1133–1138. [Google Scholar] [CrossRef]
- Tung, T.T.; Feller, J.F.; Kim, T.Y. Electromagnetic properties of Fe3O4-functionalized graphene and its composites with a conducting polymer. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 927–935. [Google Scholar] [CrossRef]
- Ho, T.D.; Joshi, M.D.; Silver, M.A. Selective extraction of genotoxic impurities and structurally alerting compounds using polymeric ionic liquid sorbent coatings in solid-phase microextraction: Alkyl halides and aromatics. J. Chromatogr. A 2012, 1240, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Dr, T.F.; Kosaka, A.; Dr, Y.Y. Dramatic Effect of Dispersed Carbon Nanotubes on the Mechanical and Electroconductive Properties of Polymers Derived from Ionic Liquids. Small 2006, 2, 554. [Google Scholar]
- Chen, X.; Li, X.; Hu, A. Advances in chiral ionic liquids derived from natural amino acids. Tetrahedron Asymmetry 2008, 19, 1–14. [Google Scholar] [CrossRef]
- Bao, W.; Wang, Z.; Li, Y. Synthesis of Chiral Ionic Liquids from Natural Amino Acids. J. Org. Chem. 2003, 68, 591–593. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Xu, H.; Li, J. Facile evolution of asymmetric organocatalysts in water assisted by surfactant Brønsted acids. Tetrahedron 2007, 63, 11307–11314. [Google Scholar] [CrossRef]
- Luo, S.; Mi, X.; Zhang, L. Functionalized ionic liquids catalyzed direct aldol reactions. Tetrahedron 2007, 63, 1923–1930. [Google Scholar] [CrossRef]
- Ni, B.; Zhang, Q.; Headley, A.D. ChemInform Abstract Pyrrolidine-Based Chiral Pyridinium Ionic Liquids (ILs) as Recyclable and Highly Efficient Organocatalysts for the Asymmetric Michael Addition Reactions. Tetrahedron Lett. 2008, 39, 1249–1252. [Google Scholar] [CrossRef]
- Mandal, P.; Misra, T.K.; Singh, I.D. Antioxidant activity in the extracts of two edible aroids. Indian J. Pharm. Sci. 2010, 72, 105–108. [Google Scholar]
- Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol. 2011, 82, 1807–1821. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Gong, L.-H.; Chen, C.-J.; Han, H.-B.; Li, H.-H. Column-chromatographic extraction and separation of polyphenols, caffeine and theanine from green tea. Food Chem. 2012, 131, 1539–1545. [Google Scholar] [CrossRef]
- Dong, W.B.; Hu, Y.; Zhang, J.H. Study on the Process of Preparation of TPs by Adsorption Resin Method. Food Sci. 2002, 23, 68–73. [Google Scholar]
- Luo, H.M.; Xu, Y.B. Study on the adsorption properties of porous starch to TPs and the antioxidant capacity of its compounds. Tea Sci. 2015, 35, 473–480. [Google Scholar]
- Yao, S.; Tang, J.; Song, H. Patent Application for Invention: A Method for the Extraction and Separation of Tea Polyphenols and Theine by Ionic Liquid. The National Patent CN108586458A, 28 September 2018. [Google Scholar]
- Abdeloihid, M.; Robert, G.; Michel, H.; Deanne, L.; Svetlana, L. Spectroscopic investigation of ground state pyrrole (12C4HsN): The N-H stretch. Chem. Phys. 1997, 220, 311–322. [Google Scholar]
- Lippert, J.L.; Robertson, J.A.; Havens, J.R.; Tan, J.S. Structural studies of poly(N-vinylimidazole) complexes by infrared and Raman spectroscopy. Macromolecules 1985, 18, 63–67. [Google Scholar] [CrossRef]
- Juan, T.; Min, L.; Jing, G.; Hang, S. Synthesis characterization and properties of tropine-based ionic liquids gels. New J. Chem. 2019, 43, 199–207. [Google Scholar]
- Xiao, S.; Xiao-li, S.; Yu-ming, Z.; Bei-bei, W.; Zhi-ying, Z.; Qiang, L.; Yong-hui, L. Synthesis of P123-Templated and DVB-Cross-linked Meso-macroporous Poly (ionic liquids) with High-Performance Alkylation. Appl. Organomet. Chem. 2020, 34, e5460. [Google Scholar]
- Zhang, W.; Feng, X.T.; Alula, Y. Bionic multi-tentacled ionic liquid-modified silica gel for adsorption and separation of polyphenols from green tea (Camellia sinensis) leaves. Food Chem. 2017, 230, 637. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Fu, J.K.; Yang, R.; Gu, P.Y. IR Absorption Spectra of Tea Polyphenol Extracted by PA/SiO2. J. Xiamen Univ. (Nat. Sci.) 1999, 38, 720–724. [Google Scholar]
Polymer Monomer | C | H | O | N |
---|---|---|---|---|
MBA | 54.5% | 6.5% | 20.8% | 18.2% |
ViProIm+-L-Pro- | 66.6% | 4% | 12.7% | 16.7% |
Pol c | 59.9% | 5.2% | 17.7% | 17.2% |
ILs Polymer | n (IL):n (MBA) | Mass Ration of IL (%) | Yield (%) |
---|---|---|---|
Pol 0 | 0:1 | 0 | 95.1 |
Pol a | 0.25:1 | 15.9 | 82.3 |
Pol b | 0.5:1 | 28.6 | 55.7 |
Pol c | 0.6:1 | 29.9 | 50.9 |
Pol d | 0.75:1 | 31.02 | 28.6 |
Pol e | 1:1 | - | - |
Solvent | Adsorption Capacity (mg/g) | Change in Capacity (%) |
---|---|---|
Ethanol | 231.5 | 0 |
Water | 239.9 | 3.6 |
Methanol | 283.8 | 22.6 |
Adsorption | Compound | Each Compound (%) | Concentration of TPs or Theophylline in Solution (mg/mL) |
---|---|---|---|
Before adsorption | ECGC | 46.4 | 0.40 |
EC | 11.6 | ||
ECG | 4.3 | ||
Theophylline | 37.7 | 0.075 | |
After adsorption | ECGC | 7.5 | 0.15 |
EC | 15 | ||
ECG | 10 | ||
Theophylline | 67.5 | 0.068 |
Run Times | 1 | 2 | 3 | 4 |
---|---|---|---|---|
adsorption capacity(mg/g) | 521 | 515 | 500 | 476 |
Variation% | 0 | −1.2 | −4.0 | −8.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Huang, X.; Yao, S.; Peng, L.; Li, F.; Song, H. Synthesis of a New Imidazole Amino Acid Ionic Liquid Polymer and Selective Adsorption Performance for Tea Polyphenols. Polymers 2020, 12, 2171. https://doi.org/10.3390/polym12102171
Luo Y, Huang X, Yao S, Peng L, Li F, Song H. Synthesis of a New Imidazole Amino Acid Ionic Liquid Polymer and Selective Adsorption Performance for Tea Polyphenols. Polymers. 2020; 12(10):2171. https://doi.org/10.3390/polym12102171
Chicago/Turabian StyleLuo, Yingjie, Xiaoxia Huang, Shun Yao, Lincai Peng, Fulin Li, and Hang Song. 2020. "Synthesis of a New Imidazole Amino Acid Ionic Liquid Polymer and Selective Adsorption Performance for Tea Polyphenols" Polymers 12, no. 10: 2171. https://doi.org/10.3390/polym12102171
APA StyleLuo, Y., Huang, X., Yao, S., Peng, L., Li, F., & Song, H. (2020). Synthesis of a New Imidazole Amino Acid Ionic Liquid Polymer and Selective Adsorption Performance for Tea Polyphenols. Polymers, 12(10), 2171. https://doi.org/10.3390/polym12102171