Synthesis of Tosyl- and Nosyl-Ended Polyisobutylenes with High Extent of Functionalities: The Effect of Reaction Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Synthesis of PIB-All
2.4. Synthesis of PIBall-OH
2.5. Synthesis of PIBexo-OH
2.6. Experiments on the Tosylation of PIBexo-OH and PIBall-OH
2.7. Experiments on the Nosylation of PIBexo-OH and PIBall-OH
2.8. Synthesis of PIBall-OTs
2.9. Synthesis of PIBall-ONs
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rajasekhar, T.; Singh, G.; Kapur, G.S.; Ramakumar, S.S.V. Recent advances in catalytic chain transfer polymerization of isobutytene: A review. RSC Adv. 2020, 10, 18180–18191. [Google Scholar] [CrossRef]
- Kulai, I.; Karpus, A.; Bergbreiter, D.E.; Al-Hashimi, M.; Bazzi, H.S. Organocatalytic Michael Addition as a Method for Polyisobuty|ene Chain-End Functionalization. Macromol. Rapid Commun. 2020, 41, 2000382. [Google Scholar] [CrossRef]
- Parada, C.M.; Yang, B.; Campbell, C.G.; Storey, R.F. Synthesis, characterization, and photopolymerization of (meth)acrylate-functional polyisobutylene macromers produced by cleavage/alkylation of butyl rubber. J. Polym. Sci. 2020, 58, 2807–2822. [Google Scholar] [CrossRef]
- Berezianko, I.A.; Vasilenko, I.V.; Kostjuk, S.V. Cationic polymerization of isobutylene co-initiated by chloroferrate imidazole-based ionic liquid: The advantageous effect of initiator and aromatic compounds. Eur. Polym. J. 2019, 121, 109307. [Google Scholar] [CrossRef]
- Shiman, D.I.; Vasilenko, I.V.; Kostjuk, S.V. Alkoxy aluminum chlorides in the cationic polymerization of isobutylene: A co-initiator, carbocation stabilizer and chain-transfer agent. Polym. Chem. 2019, 10, 5998–6002. [Google Scholar] [CrossRef]
- Li, X.; Wu, Y.; Zhang, J.; Li, S.; Zhang, M.; Yang, D.; Wang, H.; Shang, Y.; Guo, W.; Yan, P. Synthesis of Highly Reactive Polyisobutylenes via Cationic Polymerization in Ionic Liquids: Characteristics and Mechanism. Polym. Chem. 2019, 10, 201–208. [Google Scholar] [CrossRef]
- Campbell, C.G.; Storey, R.F. Functional Polyisobutylenes via Electrophilic Cleavage/Alkylation. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 1991–1997. [Google Scholar] [CrossRef]
- Yang, X.J.; Guo, A.R.; Xu, H.C.; Wu, Y.X. Direct synthesis of highly reactive polyisobutylenes via cationic polymerization of isobutylene co-initiated with TiCl4 in nonpolar hydrocarbon media. J. Appl. Polym. Sci. 2015, 132, 42232. [Google Scholar] [CrossRef]
- Guo, A.R.; Yang, X.J.; Yan, P.F.; Wu, Y.X. Synthesis of highly reactive polyisobutylenes with exo-olefin terminals via controlled cationic polymerization with H2O/FeCl3/iPrOH initiating system in nonpolar hydrocarbon media. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 4200–4212. [Google Scholar] [CrossRef]
- Chang, T.X.; Wei, Z.T.; Wu, M.Y.; Zhang, H.T.; Gao, Y.Z.; Wu, Y.X. Amphiphilic Chitosan-g-Polyisobutylene Graft Copolymers: Synthesis, Characterization, and Properties. ACS Appl. Polym. Mater. 2020, 2, 234–247. [Google Scholar] [CrossRef]
- Wu, K.D.; Wu, Y.B.; Huang, S.; Chen, Z.F.; Wang, H.; Shang, Y.W.; Li, S.X. Synthesis and characterization of hydroxyl-terminated butadiene-end-capped polyisobutylene and its use as a diol for polyurethane preparation. RSC Adv. 2020, 10, 9601–9609. [Google Scholar] [CrossRef]
- Yang, B.; Storey, R.F. Synthesis and characterization of polyisobutylene telechelic prepolymers with epoxide functionality. React. Funct. Polym. 2020, 150, 104563. [Google Scholar] [CrossRef]
- Holbrook, T.P.; Storey, R.F. Micellization and Adsorption to Carbon Black of Polyisobutylene-Based Ionic Liquids. J. Polym. Sci. 2020, 58, 280–299. [Google Scholar] [CrossRef]
- Nugay, T.; Nugay, N.; Kennedy, J.P. Synthesis, characterization and end-functionalization of a novel telechelic star: Styrene hexamer core carrying polyisobutylene arms fitted with allyl termini. Polym. Bull. 2019. [Google Scholar] [CrossRef]
- Li, J.; Wu, K.D.; Shan, H.; Zhang, J.H.; Zhao, M.; Gong, G.B.; Guo, W.L.; Wu, Y.B. Synthesis and Properties of Hydroxytelechelic Polyisobutylenes by End Capping with tert-Butyl-dimethyl-(4-methyl-pent-4-enyloxy)-silane. Chin. J. Polym. Sci. 2019, 37, 936–942. [Google Scholar] [CrossRef]
- Gao, Y.Z.; Chang, T.X.; Wu, Y.X. In-situ synthesis of acylated sodium alginate-g-(tetrahydrofuran(5)-b-polyisobutylene) terpolymer/Ag-NPs nanocomposites. Carbohydr. Polym. 2019, 219, 201–209. [Google Scholar] [CrossRef]
- Parada, C.M.; Parker, G.L.; Storey, R.F. Polyisobutylene Containing Covalently Bound Antioxidant Moieties. J. Polym. Sci. Part A Polym. Chem. 2019, 57, 1836–1846. [Google Scholar] [CrossRef]
- Kurnaz, E.; Helvacioglu, E.; Kekec, N.C.; Nugay, N.; Nugay, T.; Kennedy, J.P. High-Molecular-Weight Polyisobutylenes (PIBs) and PIB Networks from Liquid PIBs by Thiol-Ene Clicking. J. Polym. Sci. Part A Polym. Chem. 2019, 57, 1197–1208. [Google Scholar] [CrossRef]
- Yang, B.; Storey, R.F. Chain-End Functionalization of Living Polyisobutylene via an End-Quenching Comonomer That Terminates by Indanyl Ring Formation. Macromolecules 2018, 51, 6552–6560. [Google Scholar] [CrossRef]
- Wu, Y.B.; Li, K.; Xiang, D.; Zhang, M.; Yang, D.; Zhang, J.H.; Mao, J.; Wang, H.; Guo, W.L. Surface immobilization of heparin on functional polyisobutylene-based thermoplastic elastomer as a potential artificial vascular graft. Appl. Surf. Sci. 2018, 445, 8–15. [Google Scholar] [CrossRef]
- Deodhar, T.J.; Keszler, B.L.; Kennedy, J.P. Quantitative Preparation of Allyl Telechelic Polyisobutylene under Reflux Conditions. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 1784–1789. [Google Scholar] [CrossRef]
- Yang, B.; Storey, R.F. End-quenching of tert-chloride-terminated polyisobutylene with alkoxybenzenes: Comparison of AlCl3 and TiCl4 catalysts. Polym. Chem. 2015, 6, 3764–3774. [Google Scholar] [CrossRef]
- Appiah, C.; Akbarzadeh, J.; Stojanovic-Marinow, A.; Peterlik, H.; Binder, W.H. Hierarchically Mesostructured Polyisobutylene-Based Ionic Liquids. Macromol. Rapid Commun. 2016, 37, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- Kostjuk, S.V.; Yeong, H.Y.; Voit, B. Cationic Polymerization of Isobutylene at Room Temperature. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 471–486. [Google Scholar] [CrossRef]
- Kostjuk, S.V. Recent Progress in the Lewis Acid Co-Initiated Cationic Polymerization of Isobutylene and 1,3-Dienes. RSC Adv. 2015, 5, 13125–13144. [Google Scholar] [CrossRef]
- Kumar, R.; Zheng, B.; Huang, K.-W.; Emert, J.; Faust, R. Synthesis of Highly Reactive Polyisobutylene Catalyzed by EtAlCl 2 /Bis(2-Chloroethyl) Ether Soluble Complex in Hexanes. Macromolecules 2014, 47, 1959–1965. [Google Scholar] [CrossRef]
- Rajasekhar, T.; Haldar, U.; Emert, J.; Dimitrov, P.; Severt, R.; Faust, R. Catalytic Chain Transfer Polymerization of Isobutylene: The Role of Nucleophilic Impurities. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 3697–3704. [Google Scholar] [CrossRef]
- Vasilenko, I.V.; Nikishev, P.A.; Shiman, D.I.; Kostjuk, S.V. Cationic Polymerization of Isobutylene in Toluene: Toward Well-Defined Exo-Olefin Terminated Medium Molecular Weight Polyisobutylenes under Mild Conditions. Polym. Chem. 2017, 8, 1417–1425. [Google Scholar] [CrossRef]
- Rajasekhar, T.; Emert, J.; Faust, R. Synthesis of Highly Reactive Polyisobutylene by Catalytic Chain Transfer in Hexanes at Elevated Temperatures; Determination of the Kinetic Parameters. Polym. Chem. 2017, 8, 2852–2859. [Google Scholar] [CrossRef]
- Jin, Y.; Dong, K.; Xu, L.; Guo, X.; Cheng, R.; Liu, B. Facile Synthesis of Medium Molecular Weight Polyisobutylene with Remarkable Efficiency Employing the Complexed BF3·EtOH/TiCl4·H2O Initiating System. Eur. Polym. J. 2019, 120, 109204. [Google Scholar] [CrossRef]
- Iván, B.; Kennedy, J.P.; Chang, V.S.C. New telechelic polymers and sequential copolymers by polyfunctional initiator-transfer agents (inifers). VII. Synthesis and characterization of α,ω-di (hydroxy)polyisobutylene. J. Polym. Sci. Part A Polym. Chem. 1980, 18, 3177–3191. [Google Scholar] [CrossRef]
- Iván, B.; Kennedy, J.P. Living Carbocationic Polymerization. XXX. One-Pot Synthesis of Allyl-Terminated Linear and Tri-Arm Star Polyisobutylenes, and Epoxy- and Hydroxy-Telechelics Therefrom. J. Polym. Sci. Part A Polym. Chem. 1990, 28, 89–104. [Google Scholar] [CrossRef]
- Kennedy, J.P.; Chang, V.S.; Smith, R.A.; Iván, B. New telechelic polymers and sequential copolymers by polyfunctional initiator-transfer agents (inifers) V. synthesis of α-tert-butyl-ω-isopropenylpolyisobutylene and α,ω-di(isopropenyl) polyisobutylene. Polym. Bull. 1979, 1, 575–580. [Google Scholar] [CrossRef]
- Nielsen, L.V.; Nielsen, R.R.; Gao, B.; Kops, J.; Iván, B. Synthesis of isobutenyl-telechelic polyisobutylene by functionalization with isobutenyltrimethylsilane. Polymer 1997, 38, 2529–2534. [Google Scholar] [CrossRef]
- Simison, K.L.; Stokes, C.D.; Harrison, J.J.; Storey, R.F. End-quenching of quasiliving carbocationic isobutylene polymerization with hindered bases: Quantitative formation of exo-olefin-terminated polyisobutylene. Macromolecules 2006, 39, 2481–2487. [Google Scholar] [CrossRef]
- Kennedy, J.P.; Iván, B. Designed Polymers by Carbocationic Macromolecular Engineering: Theory and Practice; Hanser Publishers: Munich, NY, USA, 1992; ISBN 0-19-52092 1-4. [Google Scholar]
- Höfle, G.; Steglich, W.; Vorbrüggen, H. 4-Dialkylaminopyridines as Highly Active Acylation Catalysts. Angew. Chem. Int. Ed. 1978, 17, 569–583. [Google Scholar] [CrossRef]
- Yoshida, Y.; Sakakura, Y.; Aso, N.; Okada, S.; Tanabe, Y. Practical and Efficient Methods for Sulfonylation of Alcohols Using Ts(Ms)Cl/Et3N and Catalytic Me3H·HCl as Combined Base: Promising Alternative to Traditional Pyridine. Tetrahedron 1999, 55, 2183–2192. [Google Scholar] [CrossRef]
- Ding, R.; He, Y.; Wang, X.; Xu, J.; Chen, Y.; Feng, M.; Qi, C. Treatment of Alcohols with Tosyl Chloride Does Not Always Lead to the Formation of Tosylates. Molecules 2011, 16, 5665–5673. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.P.; Liu, H.; Liu, H.X.; Chen, X.; Wang, H.; Zhang, Q.S.; Li, Y.Z. Practical and Efficient Acylation and Tosylation of Sterically Hindered Alcohols Catalyzed with 1-Methylimidazole. Chem. Res. Chin. Univ. 2010, 26, 55–59. [Google Scholar]
- Asano, K.; Matsubara, S. Amphiphilic Organocatalyst for Schotten-Baumann-Type Tosylation of Alcohols under Organic Solvent Free Condition. Org. Lett. 2009, 11, 1757–1759. [Google Scholar] [CrossRef]
- Hwang, C.K.; Li, W.S.; Nicolaou, K.C. Reactions of Hydroxyl Groups with Tosylchloride-Dimethylaminopyridine System. Direct Synthesis of Chlorides from Hydroxycompounds. Tetrahedron Lett. 1984, 25, 2295–2296. [Google Scholar] [CrossRef]
- Kolb, H.C.; VanNieuwenhze, M.S.; Sharpless, K.B. Catalytic Asymmetric Dihydroxylation. Chem. Rev. 1994, 94, 2483–2547. [Google Scholar] [CrossRef]
- Pasto, D.J.; Cottard, F.; Jumelle, L. Photooxidation of Alkyl 4-Nitrophenyl Sulfides and Sulfoxides. Observation of Oxidative C-S Bond Cleavage and Rearrangement Reactions. J. Am. Chem. Soc. 1994, 116, 8978–8984. [Google Scholar] [CrossRef]
- De Castro, K.; Rhee, H. Selective Nosylation of 1-Phenylpropane-1,3-Diol and Perchloric Acid Mediated Friedel-Crafts Alkylation: Key Steps for the New and Straightforward Synthesis of Tolterodine. Synthesis 2008, 12, 1841–1844. [Google Scholar] [CrossRef]
- Glassner, M.; D’hooge, D.R.; Young Park, J.; Van Steenberge PH, M.; Monnery, B.D.; Reyniers, M.-F.; Hoogenboom, R. Systematic Investigation of Alkyl Sulfonate Initiators for the Cationic Ring-Opening Polymerization of 2-Oxazolines Revealing Optimal Combinations of Monomers and Initiators. Eur. Polym. J. 2015, 65, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Percec, V.; Guhaniyogi, S.C.; Kennedy, J.P.; Ivan, B. New Telechelic Polymers and Sequential Copolymers by Polyfunctional Initiator-Transfer Agents (Inifers) 22. Syntehsis and Characterization of Linear and Three-Arm Star Block Copolymers of Isobutylene and N-Acetylethyleneimine. Polym. Bull. 1982, 8, 25–32. [Google Scholar] [CrossRef]
- Kerscher, B.; Trötschler, T.M.; Pásztói, B.; Gröer, S.; Szabó, Á.; Iván, B.; Mülhaupt, R. Thermoresponsive Polymer Ionic Liquids and Nanostructured Hydrogels Based upon Amphiphilic Polyisobutylene-b-Poly(2-Ethyl-2-Oxazoline) Diblock Copolymers. Macromolecules 2019, 52, 3306–3318. [Google Scholar] [CrossRef]
- Li, J.; Sung, S.; Tian, J.; Bergbreiter, D.E. Polyisobutylene Supports a Non-Polar Hydrocarbon Analog of PEG Supports. Tetrahedron 2005, 61, 12081–12092. [Google Scholar] [CrossRef]
- Bergbreiter, D.E.; Li, J. Terminally Functionalized Polyisobutylene Oligomers as Soluble Supports in CatalysisElectronic Supplementary Information (ESI) Available: Experimental Details for the Synthesis and Use of the PIB Oligomers and Catalysts. Chem. Commun. 2004, 10, 42. [Google Scholar] [CrossRef]
Entry | Solvent | t (h) | TsCl (eq.) | Catalyst (eq.) | TEA (eq.) | -OH (%) | -OTs (%) |
1 | DCM | 24 | 1.25 | 4 (pyridine) | 0 | 84 | 16 |
2 | DCM | 48 | 1.25 | 4 (pyridine) | 0 | 84 | 16 |
3 | DCM | 72 | 1.25 | 4 (pyridine) | 0 | 84 | 16 |
4 | DCM | 24 | 5 | 2 (DMAP) | 10 | 25 | 75 |
5 | DCM | 7 | 10 | 2 (DMAP) | 10 | 0 | 100 |
6 | DCM | 22 | 10 | 2 (DMAP) | 10 | 0 | 100 |
7 | DCM | 24 | 10 | 2 (DMAP) | 10 | 0 | 100 |
8 | DCM | 29 | 10 | 2 (DMAP) | 10 | 0 | 100 |
9 | DCM | 48 | 10 | 2 (DMAP) | 10 | 0 | 100 |
10 | DCM | 70 | 10 | 2 (DMAP) | 10 | 0 | 100 |
Entry | Solvent | t (h) | NsCl (eq.) | Catalyst (eq.) | TEA (eq.) | -OH (%) | -ONs (%) |
11 | THF | 7 | 10 | 2 (DMAP) | 10 | 20 | 80 |
12 | THF | 22 | 10 | 2 (DMAP) | 10 | 11 | 89 |
13 | THF | 29 | 10 | 2 (DMAP) | 10 | 12 | 88 |
14 | THF | 70 | 10 | 2 (DMAP) | 10 | 10 | 90 |
Entry | Solvent | t (h) | TsCl (eq.) | Catalyst (eq.) | TEA (eq.) | –OH (%) | –OTs (%) | –Cl (%) |
---|---|---|---|---|---|---|---|---|
15 | DCM | 24 | 2 | 2 (DMAP) | 10 | 83 | 17 | 0 |
16 | DCM | 72 | 3 | 2 (DMAP) | 10 | 18 | 61 | 21 |
17 | DCM | 24 | 5 | 2 (DMAP) | 10 | 33 | 67 | 0 |
18 | DCM | 72 | 5 | 2 (DMAP) | 10 | 51 | 29 | 20 |
19 | DCM | 4.5 | 10 | 2 (DMAP) | 10 | 0 | 93 | 7 |
20 | DCM | 22 | 10 | 2 (DMAP) | 10 | 0 | 74 | 26 |
21 | DCM | 28 | 10 | 2 (DMAP) | 10 | 0 | 69 | 31 |
22 | DCM | 46.5 | 10 | 2 (DMAP) | 10 | 0 | 57 | 43 |
23 | DCM | 48 | 10 | 2 (DMAP) | 10 | 0 | 56 | 44 |
24 | DCM | 72 | 10 | 2 (DMAP) | 10 | 0 | 46 | 54 |
25 | DCM | 19 | 10 | 2 (DMAP) | 2 | 47 | 48 | 5 |
26 | DCM | 20 | 10 | 2 (DMAP) | 5 | 0 | 89 | 11 |
27 | DCM | 50 | 10 | 2 (DMAP) | 5 | 0 | 81 | 19 |
28 | DCM | 20 | 10 | 3 (DMAP) | 3 | 0 | 84 | 16 |
29 | DCM | 50 | 10 | 3 (DMAP) | 3 | 0 | 79 | 21 |
30 | DCM | 19 | 10 | 2 (1-MI) | 2 | 40 | 58 | 2 |
31 | DCM | 20 | 10 | 2 (1-MI) | 5 | 0 | 97 | 3 |
32 | DCM | 50 | 10 | 2 (1-MI) | 5 | 0 | 94 | 6 |
33 | DCM | 20 | 10 | 3 (1-MI) | 3 | 0 | 97 | 3 |
34 | DCM | 50 | 10 | 3 (1-MI) | 3 | 0 | 92 | 8 |
9 | Solvent | t (h) | NsCl (eq.) | Catalyst (eq.) | TEA (eq.) | -OH (%) | -ONs (%) | -Cl (%) |
---|---|---|---|---|---|---|---|---|
35 | THF | 1 | 10 | 2 (DMAP) | 10 | 8 | 89 | 3 |
36 | THF | 2 | 10 | 2 (DMAP) | 10 | 3 | 93 | 4 |
37 | THF | 3 | 10 | 2 (DMAP) | 10 | 2 | 94 | 4 |
38 | THF | 4 | 10 | 2 (DMAP) | 10 | 2 | 92 | 6 |
39 | THF | 4.5 | 10 | 2 (DMAP) | 10 | 0 | 86 | 14 |
40 | THF | 22 | 10 | 2 (DMAP) | 10 | 0 | 82 | 18 |
41 | THF | 28 | 10 | 2 (DMAP) | 10 | 0 | 82 | 18 |
42 | THF | 46.5 | 10 | 2 (DMAP) | 10 | 0 | 81 | 19 |
43 | THF | 72 | 10 | 2 (DMAP) | 10 | 0 | 71 | 29 |
44 | THF | 19 | 10 | 2 (DMAP) | 2 | 86 | 9 | 5 |
45 | THF | 20 | 10 | 2 (DMAP) | 5 | 1 | 92 | 7 |
46 | THF | 50 | 10 | 2 (DMAP) | 5 | 0 | 91 | 9 |
47 | THF | 20 | 10 | 3 (DMAP) | 3 | 0 | 81 | 19 |
48 | THF | 50 | 10 | 3 (DMAP) | 3 | 0 | 72 | 28 |
49 | THF | 19 | 10 | 2 (1-MI) | 2 | 49 | 38 | 13 |
50 | THF | 20 | 10 | 2 (1-MI) | 5 | 2 | 94 | 4 |
51 | THF | 50 | 10 | 2 (1-MI) | 5 | 2 | 90 | 8 |
52 | THF | 20 | 10 | 3 (1-MI) | 3 | 5 | 91 | 4 |
53 | THF | 50 | 10 | 3 (1-MI) | 3 | 5 | 89 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pásztói, B.; Trötschler, T.M.; Szabó, Á.; Szarka, G.; Kerscher, B.; Mülhaupt, R.; Iván, B. Synthesis of Tosyl- and Nosyl-Ended Polyisobutylenes with High Extent of Functionalities: The Effect of Reaction Conditions. Polymers 2020, 12, 2504. https://doi.org/10.3390/polym12112504
Pásztói B, Trötschler TM, Szabó Á, Szarka G, Kerscher B, Mülhaupt R, Iván B. Synthesis of Tosyl- and Nosyl-Ended Polyisobutylenes with High Extent of Functionalities: The Effect of Reaction Conditions. Polymers. 2020; 12(11):2504. https://doi.org/10.3390/polym12112504
Chicago/Turabian StylePásztói, Balázs, Tobias M. Trötschler, Ákos Szabó, Györgyi Szarka, Benjamin Kerscher, Rolf Mülhaupt, and Béla Iván. 2020. "Synthesis of Tosyl- and Nosyl-Ended Polyisobutylenes with High Extent of Functionalities: The Effect of Reaction Conditions" Polymers 12, no. 11: 2504. https://doi.org/10.3390/polym12112504
APA StylePásztói, B., Trötschler, T. M., Szabó, Á., Szarka, G., Kerscher, B., Mülhaupt, R., & Iván, B. (2020). Synthesis of Tosyl- and Nosyl-Ended Polyisobutylenes with High Extent of Functionalities: The Effect of Reaction Conditions. Polymers, 12(11), 2504. https://doi.org/10.3390/polym12112504