Preparation of a Cellulose Column for Enhancing the Sensing Efficiency of the Biocide 2-n-Octyl-4-Isothiazolin-3-One
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Fabrication
2.3. Experimental
3. Results
3.1. Water Uptake Data
3.2. Scanning Electron Microscope (SEM)
3.3. Fourier-Transform Infrared (FT-IR) Spectroscopy
3.4. Thermogravimetric Analysis (TGA)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aduenko, A.; Marray, A.; Mendoza-Cortes, J. General theory of adsorption in porous materials: Restricted multilayer theory. ACS Appl. Mater. Interfaces 2018, 10, 13244–13251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorin, R.; Sai, H.; Wiesner, U. Hierarchically porous materials from block copolymers. Chem. Mater. 2014, 26, 339–347. [Google Scholar] [CrossRef]
- Vattipalli, V.; Qi, X.; Dauenhauer, P.; Fan, W. Long walks in hierarchical porous materials due to combined surface and configuration diffusion. Chem. Mater. 2016, 28, 7852–7863. [Google Scholar] [CrossRef]
- Yao, M.; Tijing, L.; Naidu, G.; Seung-Hyun, K.; Matsuyama, H. A review of membrane wettability for the treatment of silane water developing membrane. Desalination 2020, 479, 114312. [Google Scholar] [CrossRef]
- Sheikh, M.; Pazirofteh, M.; Dehghani, M.; Asghari, M. Application of ZnO nanostructure in ceramic and polymeric membranes for water and wastewater technology: A review. Chem. Eng. J. 2020, 391, 123475. [Google Scholar] [CrossRef]
- Thompson, A.; Glandt, E. Polymers in random porous material: Structure, thermodynamics and concentrations effects. Macromolecules 1996, 29, 4314–4323. [Google Scholar] [CrossRef]
- Seung, R.; Younghyun, C.; Sang, K. Nanocomposite membranes consisting of poly(ethylene oxide)/ionic liquid/ZnO for CO2 separation. J. Ind. Eng. Chem. 2020, 85, 75–80. [Google Scholar]
- So, K.; Young, C.; Sang, K. Correlation between functional group and formation of nanoparticles in PEBAX/Ag Salt complexes for olefin separation. Polymers 2020, 12, 667. [Google Scholar]
- Qi, S.; Zhifeng, D.; Xiangju, M.; Feng-Shou, X. Porous polymer catalysts with hierarchical structure. Chem. Soc. Rev. 2015, 44, 6018. [Google Scholar]
- Selina, H.; Majid, E.; Kolbrun, H.; Margret, B.; Snaeros, A.; Bing, W. Direct membrane filtration for wastewater treatment and resource recovery: A review. Sci. Total Environ. 2020, 710, 136375. [Google Scholar]
- Desong, F.; Ming, J.; Jun, W.; Jinhui, L.; Qiang, L. Enhanced heat dissipation in graphite-silver-polyimide structure for electronic cooling. Appl. Therm. Eng. 2020, 168, 114676. [Google Scholar]
- Na, H.B.; Zhang, X.F.; Zhang, M.; Deng, Z.P.; Cheng, X.L.; Huo, L.H.; Gao, S. A fast response/recovery ppb-level H2S gas sensor based on porous CuO/ZnO heterostructural tubule via confined effect of absorbent cotton. Sens. Actuators B Chem. 2019, 297, 126816. [Google Scholar] [CrossRef]
- Yuchao, Z.; Yigen, W.; Guangshun, W.; Zhongbao, W.; Qiullin, T.; Libo, Z.; Dezhi, W. A flexible capacitive pressure sensor based on an electrospun polyimide nanofiber membrane. Org. Electron. 2020, 84, 105759. [Google Scholar]
- Jincheng, D.; Shanshan, Y.; Jiefeng, P.; Yu, Z.; Arcadio, S.; Jiangnan, S. A novel nanofiltration membrane inspired by an asymmetric porous membrane for selective fractionation of monovalent anions in electrodialysis. RSC Adv. 2018, 8, 30502. [Google Scholar]
- Yaqiu, L.; Linli, G.; Min, X.; Shuanjin, W.; Shan, R.; Dongmei, H.; Yuezhong, M. Strategies for inhibiting anode dendrite growth in lithium-sulfur batteries. J. Mater. Chem. A Mater. 2020, 8, 4629. [Google Scholar]
- Shing, P.; Yuxiang, W.; Dan, Z. Scalable and sustainable synthesis of advanced porous materials. ACS Sustain. Chem. Eng. 2019, 7, 3647–3670. [Google Scholar]
- Giovanni, C.; Rafael, F.; Anne, G.; Francesso, R.; Florenza, Q. Mesoporous materials for antihydrogen production. Chem. Soc. Rev. 2013, 42, 3821. [Google Scholar]
- Arshad, H.; Dan, L.; Yang, L.; Hongzhang, Z.; Huamin, Z. Porous membrane with improved dendrite resistance for high-performance lithium metal-based battery. J. Memb. Sci. 2020, 605, 118108. [Google Scholar]
- Xiaourui, R.; Lina, Z.; Xuefu, C.; Yuyang, C.; Yunqi, L.; Huanhuan, L.; Hui, C.; Hongxiang, H.; Jianguo, L.; Jingshuai, Y. Quaternary ammonium groups grafted polybenzimidazole membranes for vanadium redox flow battery applications. J. Power Sources 2020, 457, 228037. [Google Scholar]
- Alrammouz, R.; Podlecki, J.; Vena, A.; Garcia, R.; Abboud, P.; Habchi, R.; Sorli, B. Highly porous and flexible capacitive humidity sensor based on self-assembled graphene oxide sheets on a paper substrate. Sens. Actuators B Chem. 2019, 298, 126892. [Google Scholar] [CrossRef]
- Sufang, Z.; Wenhao, J.; Yiwen, L.; Xueli, Y.; Peng, S.; Fangmeng, L.; Xu, Y.; Yang, G.; Xishuang, L.; Jian, M.; et al. Highly-sensitivity acetone sensors based on spinel-type oxide (NiFe2O4) through optimization of porous structure. Sens. Actuators B Chem. 2019, 291, 266–274. [Google Scholar]
- Peng, T.; Yao, J.; Xiao-Qin, L.; Lin-Bing, S. Making porous materials respond to visible light. ACS Energy Lett. 2019, 4, 2656–2667. [Google Scholar]
- Mohammed, R.; Alam, M.; Abdullah, A.; Jamal, U. 3-Methoxyphenol chemical sensor fabrication with Ag2O/CB nanocomposites. New J. Chem. 2020, 44, 2001. [Google Scholar]
- Kopytin, A.; German, K.; Zhizhin, K.; Safonov, A.; Zhukov, A.; Shpigun, L. A tetradecylphosphonium compounds-based membrane sensor for potentiometric quantitation of pertechnetate-ions in cementitious radioactive waste. Sens. Actuators B Chem. 2020, 310, 127853. [Google Scholar] [CrossRef]
- Bo, Z.; Yan, W.; Xiaoning, M.; Zhanying, Z.; Shifang, M. High response methane sensor based on Au-modified hierarchical porous nanosheets-assembled ZnO microspheres. Mater. Chem. Phys. 2020, 250, 123027. [Google Scholar]
- Yanni, L.; Zhi, W.; Song, Z.; Xiaochang, C.; Nan, L.; Jixiao, W.; Shichang, W. Hydrothermal pretreatment: A simple method for dry substrate membrane regeneration. Sep. Purif. Technol. 2018, 199, 152–160. [Google Scholar]
- Neha, T.; Chandrabhan, P.; Rachana, Y.; Neeraj, K.J. First-principles design of nano-porous graphene membranes for efficient separation of halogen gases. Diam. Relat. Mater. 2020, 108, 107911. [Google Scholar]
- Lei, W.; Jiangtao, J.; Muhammad, F.; Yuyang, T.; Guangshan, Z. Fabrication of triazine-based Porous Aromatic Framework (PAF) membrane with structural flexibility for gas mixtures separation. J. Ind. Eng. Chem. 2018, 67, 373–379. [Google Scholar]
- Anna, O.; Vladimir, V.; Ilya, B.; Stepan, B.; Alexey, V. Polysulfone porous hollow fiber membranes for ethylene-ethane separation in gas-liquid membrane contactor. Sep. Purif. Technol. 2017, 183, 162–172. [Google Scholar]
- Jansen, S.; Kuo-Jen, H.; Chiao-Wei, C.; Hung-Yuan, T.; Allen, H.; Chien-Hua, C.; Tung-Wen, C.; Kuo-Lun, T. Fenton oxidation-based cleaning technology for powdered activated carbon-precoated dynamic membranes used in microfiltration seawater pretreatment system. J. Memb. Sci. 2019, 591, 117298. [Google Scholar]
- Woong, L.; Do, K.; Woo, J.; Sang, K.; Seok, K.; Sang, K. Facile control of nanoporsity in cellulose acetate using nickel(II) nitrate additive and water pressure treatment for highly efficient battery gel separators. Sci. Rep. 2017, 7, 1287. [Google Scholar]
- Tatsuo, K. Water adsorption properties controlled by coating/filling ordered mesoporous silica inside cellulose membranes. Chem. Phys. 2013, 15, 15056. [Google Scholar]
Time (h) | Water Uptake (%) |
---|---|
0 | 100 |
2 | 45.95 |
4 | 9.75 |
6 | 1.60 |
Peaks | Neat CA | CA/OIT 1:1.0 × 10−1 | CA/OIT 1:1.0 × 10−2 | CA/OIT 1:1.0 × 10−3 |
---|---|---|---|---|
1735–1737 cm−1 | 79.63% | 75.16% | 81.00% | 72.79% |
1754–1755 cm−1 | 20.37% | 24.84% | 19.00% | 27.21% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, S.H.; Kang, S.W. Preparation of a Cellulose Column for Enhancing the Sensing Efficiency of the Biocide 2-n-Octyl-4-Isothiazolin-3-One. Polymers 2020, 12, 2712. https://doi.org/10.3390/polym12112712
Hong SH, Kang SW. Preparation of a Cellulose Column for Enhancing the Sensing Efficiency of the Biocide 2-n-Octyl-4-Isothiazolin-3-One. Polymers. 2020; 12(11):2712. https://doi.org/10.3390/polym12112712
Chicago/Turabian StyleHong, Seong Ho, and Sang Wook Kang. 2020. "Preparation of a Cellulose Column for Enhancing the Sensing Efficiency of the Biocide 2-n-Octyl-4-Isothiazolin-3-One" Polymers 12, no. 11: 2712. https://doi.org/10.3390/polym12112712
APA StyleHong, S. H., & Kang, S. W. (2020). Preparation of a Cellulose Column for Enhancing the Sensing Efficiency of the Biocide 2-n-Octyl-4-Isothiazolin-3-One. Polymers, 12(11), 2712. https://doi.org/10.3390/polym12112712