Synthesis and Characterization of Polyaniline-Chitosan Patches with Enhanced Stability in Physiological Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Chitosan Viscous Solution
2.3. Fabrication of Chitosan Film on Microscopic Glass Slides
2.4. Fabrication of Chitosan-PAni Conductive Polymeric Patches
2.5. Material Characterization
2.5.1. In Vitro Characterization Physical Properties of the Patch
2.5.2. In Vitro Characterization/Electronic Properties of the Patch
3. Results and Discussion
3.1. Surface Morphology of the Patches Using SEM
3.2. Morphological Studies of Patch-5 Using Atomic Force Microscopy (AFM)
3.3. Sheet Resistance of the Patch
3.4. Energy-Dispersive X-ray Spectroscopy and Elemental Mapping
3.5. FTIR Spectroscopy
3.6. Cyclic Voltammetry (CV)
3.7. UV-Vis Spectroscopy
4. Conclusions
Author Contributions
Funding
Acknowledgments
Dedication
Conflicts of Interest
References
- Owens, M.R.; Malliaras, G.G. Organic electronics at the interface with biology. MRS Bull. 2010, 35, 449–456. [Google Scholar] [CrossRef]
- Mawad, D.; Stewart, E.; Officer, D.L.; Romeo, T.; Wanger, P.; Wanger, K.; Wallace, G. A single component conducting polymer hydrogel as a scaffold for tis sue engineering. Adv. Funct. Mater. 2012, 22, 2692–2699. [Google Scholar] [CrossRef]
- Mawad, D.; Molino, J.P.; Gambhir, S.; Locke, M.J.; Officer, D.L.; Wallace, G.G. Electrically induced disassembly of electroactive multilayer films fabricated from water soluble polythiophenes. Adv. Funct. Mater. 2012, 22, 5020–5027. [Google Scholar] [CrossRef]
- Mawad, D.; Gilmore, K.; Molino, P.; Wagner, K.; Wagner, P.; Officer, D.L.; Wallace, G.G. An erodible polythiophene-based composite for biomedical applications. J. Mater. Chem. 2011, 21, 5555–5560. [Google Scholar] [CrossRef]
- Balint, R.; Cassidy, N.J.; Cartmell, S.H. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater. 2014, 10, 2341–2353. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; MacDiarmid, A.G. New synthesis of phenyl/phenyl end-capped tetraaniline in the leucoemeraldine and emeraldine oxidation states. Synth. Met. 2002, 129, 199–205. [Google Scholar] [CrossRef]
- Garner, B.; Georgevich, A.; Hodgson, J.A.; Liu, L.; Wallace, G.G. Polypyrrole-heparin composites as stimulus-responsive substrates for endothelial cell growth. J. Biomed. Mater. Res. 1999, 44, 121–129. [Google Scholar] [CrossRef]
- Borriello, A.; Guarino, V.; Schiavo, L.; Alvarez-Perez, A.M.; Ambrosio, L. Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle. J. Mater. Sci. Mater. Med. 2011, 22, 1053–1062. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Yan, H.Y.; Li, P.S.; Feng, T. Synthesis of a novel biodegradable and electroactive polyphosphazene for biomedical application. Biomed. Mater. 2009, 4, 035008. [Google Scholar] [CrossRef]
- Sedaghat, S. Synthesis and Evaluation of Chitosan-Polyaniline Copolymer in Presence of Ammonium Persulfate as Initiator. J. Appl. Chem. Res. 2014, 8, 47–54. [Google Scholar] [CrossRef]
- Kang, W.D.; Choi, R.H.; Keon, K.D. Stability constants of amidoximated chitosan-g-poly(acrylonitrile) copolymer for heavy metal ions. J. Appl. Polym. Sci. 1999, 73, 469–476. [Google Scholar] [CrossRef]
- Lee, F.W.; Chen, J.Y. Studies on preparation and swelling properties of the N-isopropylacrylamide/chitosan semi-IPN and IPN hydrogels. J. Appl. Polym. Sci. 2001, 82, 2487–2496. [Google Scholar] [CrossRef]
- Shukla, K.S.; Tiwari, A. Synthesis of chemical responsive chitosan–grafted-polyaniline bio-composite. Adv. Mater. Res. 2011, 306, 82–86. [Google Scholar] [CrossRef]
- Mihic, A.; Cui, Z.; Wu, J.; Vlacic, G.; Miyagi, Y.; Li, H.S.; Lu, S.; Sung, W.H.; Weisel, D.R.; Li, K.R. A conductive polymer hydrogel supports cell electrical signaling and improves cardiac function after implantation into myocardial infarct. Circulation 2015, 132, 772–784. [Google Scholar] [CrossRef]
- Tiwari, A.; Singh, V. Synthesis and characterization of electrical conducting chi-tosan-graft-polyaniline. Express Polym. Lett. 2007, 5, 308–317. [Google Scholar] [CrossRef]
- Moutsatsou, P.; Coopman, K.; Georgiadou, S. Biocompatibility assessment of conducting PANI/Chitosan nanofibers for wound healing applications. Polymers 2017, 9, 687. [Google Scholar] [CrossRef]
- Kushwaha, S.C.; Singh, P.; Shukla, K.S.; Dubey, G.C. Electrochemical urea sensing over polyaniline grafted chitosan copolymer. Mater. Today Proc. 2018, 5, 15253–15260. [Google Scholar] [CrossRef]
- Pasela, R.B.; Castillo, P.A.; Simon, R.; Pulido, T.M.; Manaay, H.; Abiquibil, R.M.; Montecillo, R.; Thumanu, K.; Tumacder, V.D.; Tacca, L.K. Synthesis and characterization of acetic acid doped Polyaniline and Polyaniline-chitosan composite. Biomimetics 2019, 4, 15. [Google Scholar] [CrossRef]
- Lee, S.; Choi, D.; Son, Y. Hazardous acid detection based on chitosan-grafted polyaniline copolymer. Polym. Eng. Sci. 2019, 59, 105–110. [Google Scholar] [CrossRef]
- Epstein, J.A.; Ginder, M.J.; Zuo, F.; Woo, S.H.; Tanner, B.D.; Richter, F.A.; Angelopoulos, M.; Huang, S.W.; MacDiarmid, G.A. Insulator-to-metal transition in polyaniline: Effect of protonation in emeraldine. Synth. Met. 1987, 21, 63–70. [Google Scholar] [CrossRef]
- Cui, C.; Faraji, N.; Lauto, A.; Travaglini, L.; Tonkin, J.; Mahns, D.; Humphrey, E.; Terracciano, C.; Gooding, J.J.; Seidel, J.; et al. A flexible polyaniline-based bioelectronic patch. Biomater. Sci. 2018, 6, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Yu, G.; Zhai, D.; Lee, R.H.; Zhao, W.; Liu, N.; Wang, H.; Tee, K.C.B.; Shi, Y.; Cui, Y.; et al. Hierarchical nanostructured conducting polymer hydrogel with high Electrochemical activity. Proc. Natl. Acad. Sci. USA 2012, 109, 9287–9292. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Jeong, C.; Ghafoor, K.; Cho, S.; Park, J. Oral delivery of insulin using chitosan capsules cross-linked with phytic acid. Biomed. Mater. Eng. 2011, 21, 25–36. [Google Scholar] [CrossRef]
- Konyushenko, E.; Trchova, M.; Stejskal, J.; Sapurina, I. The role of acidity profile in the nanotubular growth of polyaniline. Chem. Pap. 2010, 64, 56–64. [Google Scholar] [CrossRef]
- Huang, J.; Kaner, B.R. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 2004, 126, 851–855. [Google Scholar] [CrossRef]
- Cui, Z.; Ni, C.N.; Wu, J.; Du, Q.G.; He, S.; Yau, M.T.; Weisel, D.R.; Sung, W.H.; Li, K.R. Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation. Theranostics 2018, 8, 2752–2764. [Google Scholar] [CrossRef]
- Guo, B.; Lei, B.; Li, P.; Ma, X.P. Functionalized scaffolds to enhance tissue regeneration. Regen. Biomater. 2015, 2, 47–57. [Google Scholar] [CrossRef]
- Gao, X.; Jing, X.; Li, Y.; Zhu, J.; Zhang, M. Synthesis and characterization of phosphorized polyaniline doped with phytic acid and its anticorrosion properties for Mg-Li alloy. J. Macromol. Sci. A 2018, 55, 24–35. [Google Scholar] [CrossRef]
- Ismail, A.Y.; Shin, R.S.; Shin, M.K.; Yoon, G.S.; Shon, K.; Kim, I.S. Electrochemical actuation in chitosan/polyaniline microfibers for artificial muscles fabricated using an in situ polymerization. Sens. Actuators B Chem. 2008, 129, 834–840. [Google Scholar] [CrossRef]
- Yavuz, G.A.; Uygun, A.; Bhethanabotla, R.V. Substituted polyaniline/chitosan composites: Synthesis and characterization. Carbohydr. Polym. 2009, 75, 448–453. [Google Scholar] [CrossRef]
- Xu, H.X.; Ren, L.G.; Chen, J.G.; Liu, Q.; Li, G.D.; Chen, Q. Selfassembly of polyaniline-grafted chitosan/glucose oxidase nanolayered films for electrochemical biosensor applications. J. Mater. Sci. 2006, 41, 4974–4977. [Google Scholar] [CrossRef]
- Yavuz, G.A.; Uygun, A.; Bethanabotla, R.V. Preparation of substituted polyaniline/chitosan composites by in situ electropolymerization and their application to glucose sensing. Carbohydr. Polym. 2010, 81, 712–719. [Google Scholar] [CrossRef]
- Ramanathana, S.; Ponnuswamya, V.; Gowthama, B.; Premnazeerb, K.; Murugavelc, C.S. Effect of aniline concentration on chitosan-grafted polyaniline. J. Optoelectron. Adv. Mater. 2014, 16, 973–977. [Google Scholar] [CrossRef]
- Khairkar, R.S.; Raut, R.A. Synthesis of chitosan-graft-polyaniline-based composites. Am. J. Mater. Sci. Eng. 2014, 2, 62–67. [Google Scholar] [CrossRef]
- Arefinia, R.; Shojaei, A.; Shariatpanahi, H.; Neshati, J. Anticorrosion properties of smart coating based on polyaniline nanoparticles/epoxy-ester system. Prog. Org. Coat. 2012, 75, 502–508. [Google Scholar] [CrossRef]
- Kim, H.J.; Im, S.; Kim, J.C.; Hong, W.G.; Shin, K.; Jeong, H.Y.; Hong, J.H. Phytic acid doped polyaniline nanofibers for enhanced aqueous copper(II) adsorption capability. ACS Sustain. Chem. Eng. 2017, 5, 6654–6664. [Google Scholar] [CrossRef]
- Trchova, M.; Stejskal, J. The infrared spectroscopy of conducting polymer nanotubes. Pure Appl. Chem. 2011, 83, 1803–1817. [Google Scholar] [CrossRef]
- Tarver, J.; Yoo, J.E.; Dennes, T.J.; Schwartz, J.; Loo, Y.L. Polymer acid doped polyaniline is electrochemically stable beyond pH 9. Chem. Mater. 2009, 21, 280–286. [Google Scholar] [CrossRef]
- Diaz, A.F.; Logan, J.A. Electroactive polyaniline films. J. Electroanal. Chem. 1980, 111, 111–114. [Google Scholar] [CrossRef]
- Wang, Y.; Levon, K. Influence of dopant on electroactivity of polyaniline. Macromol. Symp. 2012, 240–247. [Google Scholar] [CrossRef]
- Han, M.G.; Cho, S.K.; Oh, S.G.; Im, S.S. Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution. Synth. Met. 2002, 126, 53–60. [Google Scholar] [CrossRef]







| Sample Code | Roughness | Sheet Resistance (Ohm/cm2) | |
|---|---|---|---|
| Average Resistance (Ra) | Root Mean Square Resistance (Rq) | ||
| Pristine chitosan | 13.52 nm | 20.19 nm | - | 
| Patch-5 | 51.86 nm | 66.31 nm | 14.15 | 
| Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. | 
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, S.U.; Bilal, S.; ul Haq Ali Shah, A. Synthesis and Characterization of Polyaniline-Chitosan Patches with Enhanced Stability in Physiological Conditions. Polymers 2020, 12, 2870. https://doi.org/10.3390/polym12122870
Rahman SU, Bilal S, ul Haq Ali Shah A. Synthesis and Characterization of Polyaniline-Chitosan Patches with Enhanced Stability in Physiological Conditions. Polymers. 2020; 12(12):2870. https://doi.org/10.3390/polym12122870
Chicago/Turabian StyleRahman, Sami Ur, Salma Bilal, and Anwar ul Haq Ali Shah. 2020. "Synthesis and Characterization of Polyaniline-Chitosan Patches with Enhanced Stability in Physiological Conditions" Polymers 12, no. 12: 2870. https://doi.org/10.3390/polym12122870
APA StyleRahman, S. U., Bilal, S., & ul Haq Ali Shah, A. (2020). Synthesis and Characterization of Polyaniline-Chitosan Patches with Enhanced Stability in Physiological Conditions. Polymers, 12(12), 2870. https://doi.org/10.3390/polym12122870
 
        



 
       