Different Approaches to Oxygen Functionalization of Multi-Walled Carbon Nanotubes and Their Effect on Mechanical and Thermal Properties of Polyamide 12 Based Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Functionalization of Carbon Nanotubes
2.2. Preparation of PA12/Carbon Nanotube Composites
2.3. Characterization of Carbon Nanotubes
2.4. Characterization of Polymer Composites
3. Results
3.1. Analysis of Carbon Nanotube Functonalization
3.2. The Effect of Carbon Nanotube Functinalization on Performance of Polymer Composites
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fuhrer, M.S.; Nygard, J.; Shih, L.; Forero, M.; Yoon, Y.-G.; Mazzoni, M.S.C.; Choi, H.J.; Ihm, J.; Louie, S.G.; Zettl, A.; et al. Crossed nanotube junctions. Science 2000, 288, 494–497. [Google Scholar] [CrossRef] [Green Version]
- Collins, P.G.; Zettl, A.; Bando, H.; Thess, A.; Smalley, R.E. Nanotube Nanodevice. Science 1997, 278, 100–102. [Google Scholar] [CrossRef]
- Schadler, L.S.; Giannaris, S.C.; Ajayan, P.M. Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 1998, 73, 3842–3844. [Google Scholar] [CrossRef]
- Qian, D.; Dickey, E.C.; Andrews, R.; Rantell, T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 2000, 76, 2868–2870. [Google Scholar] [CrossRef] [Green Version]
- Thostenson, E.T.; Zhifeng, R.; Chou, T.-W. Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review. Comput. Sci. Technol. 2001, 61, 1899–1912. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.J.; Zhang, Y.; Wang, D.; Dai, H.J. Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization. Am. Chem. Soc. 2001, 123, 3838–3839. [Google Scholar] [CrossRef] [PubMed]
- Satishkumar, B.C.; Govindaraj, A.; Mofokeng, J.; Subbanna, G.N.; Rao, C.N.R. Novel experiments with carbon nanotubes: Opening, filling, closing and functionalizing nanotubes. J. Phys. B At. Mol. Opt. Phys. 1996, 29, 4925–4934. [Google Scholar] [CrossRef]
- Zhang, N.; Xie, J.; Varadan, V.K. Functionalization of carbon nanotubes by potassium permanganate assisted with phase transfer catalyst. Smart Mater. Struct. 2002, 11, 962–965. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, Z.; Gu, Z.; Iijima, S. Structure modification of single-walled carbon nanotubes. Carbon 2000, 38, 2055–2059. [Google Scholar] [CrossRef]
- Kundu, S.; Wang, Y.; Xia, W.; Muhler, M. Thermal Stability and Reducibility of Oxygen-Containing Functional Groups on Multiwalled Carbon Nanotube Surfaces: A Quantitative High-Resolution XPS and TPD/TPR Study. J. Phys. Chem. C 2008, 112, 16869–16878. [Google Scholar] [CrossRef]
- Shieh, Y.-T.; Liu, G.-L.; Wu, H.-H.; Lee, C.-C. Effects of polarity and pH on the solubility of acid-treated carbon nanotubes in different media. Carbon 2007, 45, 1880–1890. [Google Scholar] [CrossRef]
- Valentini, F.; Orlanducci, S.; Terranova, M.L.; Amine, A.; Palleschi, G. Carbon nanotubes as electrode materials for the assembling of new electrochemical biosensors. Sens. Actuator B Chem. 2004, 100, 117–125. [Google Scholar] [CrossRef]
- Ros, T.G.; van Dillen, A.J.; Geus, J.W.; Koningsberger, D.C. Surface oxidation of carbon nanofibres. Chem. Eur. J. 2002, 8, 1151–1162. [Google Scholar] [CrossRef]
- Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010, 35, 357–401. [Google Scholar] [CrossRef]
- Ma, P.-C.; Siddiqui, N.A.; Marom, G.; Kim, J.-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A Appl. Sci. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Liu, Y.; Kumar, S. Polymer/Carbon Nanotube Nano Composite Fibers—A Review. Appl. Mater. Interface 2014, 6, 6069–6087. [Google Scholar] [CrossRef]
- Kingston, C.; Zepp, R.; Andrady, A.; Boverhof, D.; Fehir, R.; Hawkins, D.; Roberts, J.; Sayre, P.; Shelton, B.; Sultan, Y.; et al. Release characteristics of selected carbon nanotube polymer composites. Carbon 2014, 68, 33–37. [Google Scholar] [CrossRef]
- Domun, N.; Hadavinia, H.; Zhang, T.; Sainsbury, T.; Liaghata, G.H.; Vahida, S. Improving the fracture toughness and the strength of epoxy using nanomaterials—A review of the current status. Nanoscale 2015, 7, 10294–10329. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Kim, S.K. High Performance PET/Carbon Nanotube Nanocomposites: Preparation, Characterization, Properties and Applications. In Nanocomposites—New Trends and Developments; Ebrahimi, F., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Szymczyk, A.; Roslaniec, Z.; Zenker, M.; Garcia-Gutierez, M.C.; Hernandez, J.J.; Rueda, D.R.; Nogales, A.; Ezquerra, T.A. Preparation and characterization of nanocomposites based on COOH functionalized multi-walled carbon nanotubes and on poly(trimethylene terephthalate). Express Polym. Lett. 2011, 5, 977–995. [Google Scholar] [CrossRef] [Green Version]
- Jyoti, J.; Basu, S.; Singh, B.P.; Dhakate, S.R. Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites. Compos. Part B Eng. 2015, 83, 58–65. [Google Scholar] [CrossRef]
- Kuvshinova, S.A.; Burmistrov, V.A.; Koifman, O.I.; Novikov, I.V. PVC carbon nanostructure composite materials: Approaches to their fabrication and properties. Nanotechnol. Russia 2015, 10, 1–12. [Google Scholar] [CrossRef]
- Sattar, R.; Kausar, A.; Siddiq, M. Advances in thermoplastic polyurethane composites reinforced with carbon nanotubes and carbon nanofibers: A review. J. Plast. Film Sheet. 2015, 31, 186–224. [Google Scholar] [CrossRef]
- Al-Saleh, M.H. Electrically conductive carbon nanotube/polypropylene nanocomposite with improved mechanical properties. Mater. Des. 2015, 85, 76–81. [Google Scholar] [CrossRef]
- Aharoni, S.M. n-Nylons: Their Synthesis, Structure, and Properties; Willey&Sons: Chichester, UK, 1997. [Google Scholar]
- Kohan, M.I.; Barineau, J.M.; Rao, M.K.K. Commercial Nylon Plastics and their Applications. In Nylon Plastics Handbook; Kohan, M.I., Ed.; Hanser: Munich, Germany, 1995. [Google Scholar]
- Li, J.; Tong, L.; Fang, Z.; Gu, A.; Xu, Z. Thermal degradation behavior of multi-walled carbon nanotubes/polyamide 6 composites. Polym. Degrad. Stab. 2006, 91, 2046–2052. [Google Scholar] [CrossRef]
- Giraldo, L.F.; Brostow, W.; Devaux, E.; Lopez, B.L.; Perez, L.D.J. Scratch and wear resistance of polyamide 6 reinforced with multiwall carbon nanotubes. Nanosci. Nanotechol. 2008, 8, 3176–3183. [Google Scholar] [CrossRef]
- Meincke, O.; Kaempfer, D.; Weickmann, H.; Friedrich, C.; Vathauer, M.; Warth, H. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 2004, 45, 739–748. [Google Scholar] [CrossRef]
- Socher, R.; Krause, B.; Hermasch, S.; Wursche, R.; Pötschke, P. Electrical and thermal properties of polyamide 12 composites with hybrid fillers systems of multiwalled carbon nanotubes and carbon black. Compos. Sci. Technol. 2011, 71, 1053–1059. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Nuesch, F.A.; Chu, B.T.T. Comparing carbon nanotubes and graphene nanoplatelets as reinforcements in polyamide 12 composites. Nanotechnology 2011, 22, 275714. [Google Scholar] [CrossRef]
- Hu, Y.; Shen, J.; Li, N.; Ma, H.; Shi, M.; Yan, B.; Huang, W.; Wang, W.; Ye, M. Comparison of the thermal properties between composites reinforced by raw and amino-functionalized carbon materials. Compos. Sci. Technol. 2010, 70, 2176–2182. [Google Scholar] [CrossRef]
- Hou, Y.; Tang, J.; Zhang, H.; Qian, C.; Feng, Y.; Liu, J. Functionalized Few-Walled Carbon Nanotubes for Mechanical Reinforcement of Polymeric Composites. Nano 2009, 3, 1057–1062. [Google Scholar] [CrossRef] [Green Version]
- Ayesh, A.S.; Ibrahim, S.S.; Abu-Abdeen, M. Low percolation threshold of functinalized single-walled carbon nanotube—Polycarbonate nanocomposites. J. Reinf. Plast. Comp. 2012, 31, 1113–1123. [Google Scholar] [CrossRef]
- Sahooa, N.G.; Rana, S.; Cho, J.W.; Li, L.; Chana, S.H. Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 2010, 35, 837–867. [Google Scholar] [CrossRef]
- Pełech, I.; Pełech, R.; Narkiewicz, U.; Moszyński, D.; Jędrzejewska, A.; Witkowski, B. Chlorination of carbon nanotubes obtained In the different metal catlaysts. J. Nanomater. 2013, 2013, 836281. [Google Scholar] [CrossRef] [Green Version]
- Pełech, I.; Kwiatkowska, M.; Jędrzejewska, A.; Pełech, R.; Kowalczyk, I. Thermal and mechanical properties of polyamide 12/modi-fied carbon nanotubes composites prepared via the in situ ring-opening polymerization. Polimery 2017, 62, 101–108. [Google Scholar] [CrossRef]
- Amiri, A.; Shanbedi, M.; Maghrebi, M.; Baniadam, M. One-pot, efficient functionalization of multi-walled carbon nanotubes with diamines by microwave method. Appl. Surf. Sci. 2011, 257, 10261–10266. [Google Scholar] [CrossRef]
- Mallakpour, S.; Zadehnazari, A. Functionalization of multi-wall carbon nanotubes with amino acid and its influence on the properties of thiadiazol bearing poly(amide-thioester-imide) composites. Synth. Met. 2013, 169, 1–11. [Google Scholar] [CrossRef]
- Wang, L.; Feng, S.; Zhao, J.; Zheng, J.; Wang, Z.; Li, L.; Zhu, Z. A facile method to modify carbon nanotubes with nitro/amino groups. Appl. Surf. Sci. 2010, 256, 6060–6064. [Google Scholar] [CrossRef]
- Niu, L.; Luo, Y.; Li, Z. A highly selective chemical gas sensor based on functionalization of multi-walled carbon nanotubes with poly(ethylene glycol). Sens. Actuators B 2007, 126, 361–367. [Google Scholar] [CrossRef]
- Lau, C.H.; Cervini, R.; Clarke, S.R.; Markovic, M.G.; Matisons, J.G.; Hawkins, S.C.; Huynh, C.P.; Simon, G.P. The effect of functionalization on structure and electrical conductivity of multi-walled carbon nanotubes. J. Nanopart. Res. 2008, 10, 77–88. [Google Scholar] [CrossRef]
- Mansor, N.A.; Rinaldi, J.P.T.; Reiche, S.; Kutty, M.G. Chemically modified multi-walled carbon nanotubes (MWCNTs) with anchored acidic groups. Sains Malays. 2012, 41, 603–609. [Google Scholar]
- Kaur, A.; Singh, I.; Kumar, J.; Bhatnagar, C.; Dixit, S.K.; Bhatnagar, P.K.; Mathur, P.C.; Covas, J.A.; da Conceicao Paiva, M. Enhancement in the performance of multi-walled carbon nanotube: Poly(methylmethacrylate) composite thin film ethanol sensors through appropriate nanotube functionalization. Mater. Sci. Semicond. Proc. 2015, 31, 166–174. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99. [Google Scholar] [CrossRef]
- Saito, R.; Hofmann, M.; Dresselhaus, G.; Jorio, A.; Dresselhaus, M.S. Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 2011, 60, 413–550. [Google Scholar] [CrossRef]
- Edwards, E.R.; Antunes, E.F.; Botelho, E.C.; Baldan, M.R.; Corat, E.J. Evaluation of residual iron in carbon nanotubes purified by acid treatments. Appl. Surf. Sci. 2011, 258, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Zheng, X.; Chen, A.; Chen, Y.; He, G.; Chen, H. Hydroxyl functionalization of single-walled carbon nanotubes causes inhibition to the bacterial denitrification process. Chem. Eng. J. 2015, 279, 47–55. [Google Scholar] [CrossRef]
- Tian, R.; Wang, X.; Li, M.; Hu, H.; Chen, R.; Liu, F.; Zheng, H.; Wan, L. An efficient route to functionalize singe-walled carbon nanotubes using alcohols. Appl. Surf. Sci. 2008, 255, 3294–3299. [Google Scholar] [CrossRef]
- Ran, M.; Sun, W.; Liu, Y.; Chu, W.; Jiang, C. Functionalization of multi-walled carbon nanotubes using water-assisted chemical vapor deposition. J. Solid State Chem. 2013, 197, 517–522. [Google Scholar] [CrossRef]
- Osswald, S.; Havel, M.; Gogotsi, Y. Monitoring oxidation of multiwalled carbon nanotubes by raman spectroscopy. J. Raman Spectrosc. 2007, 38, 728–736. [Google Scholar] [CrossRef]
- Pełech, I.; Pełech, R.; Kaczmarek, A.; Jędrzejewska, A.; Moszyński, D. Effect of treating method on the physicochemical properties of amine-functionalized carbon nanotubes. Int. J. Mater. Res. 2015, 107, 35–43. [Google Scholar] [CrossRef]
- Dieckhoff, S.; Schlett, V.; Possart, W.; Hennemann, O.-D. Fresenius, XPS studies of thin polycyanurate films on silicon wafers. J. Anal. Chem. 1995, 353, 278–281. [Google Scholar] [CrossRef]
- Gardner, S.D.; Singamsetty, C.S.K.; Booth, G.L.; He, G.-R.; Pittman, C.U., Jr. Surface characterization of carbon fibers using angle-resolved XPS and ISS. Carbon 1995, 33, 587–595. [Google Scholar] [CrossRef]
- Kwon, Y.; Yim, B.-S.; Kim, J.-M.; Kim, J. Dispersion, hybrid interconnection and heat dissipation properties of functionalized carbon nanotubes in epoxy composites for electrically conductive adhesives (ECAs). Microelectron. Reliab. 2011, 51, 812–818. [Google Scholar] [CrossRef]
- Bai, J.; Ruth, D.; Goodridge, R.D.; Hague, R.J.M.; Song, M.; Okamoto, M. Influence of carbon nanotubes on the rheology and dynamic mechanical properties of polyamide-12 for laser sintering. Polym. Test. 2014, 36, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Faridirad, F.; Barmar, M.; Ahmadi, S. The effect of MWCNT on dynamic mechanical properties and crystallinity of in situ polymerized polyamide 12 nanocomposite. Polym. Adv. Technol. 2018, 29, 2134–2146. [Google Scholar] [CrossRef]
- Ghislandi, M.; de Prado, L.A.S.A.; Schulte, K.; Barros-Timmons, A. Effect of filler functionalization on thermo-mechanical properties of polyamide-12/carbon nanofibers composites: A study of filler–matrix molecular interactions. J. Mater. Sci. 2013, 48, 8427–8437. [Google Scholar] [CrossRef]
- Levchik, S.; Weil, E.D.; Lewin, M. Thermal decomposition of aliphatic nylons. Polym. Int. 1999, 48, 532–557. [Google Scholar] [CrossRef]
- Roy, S.; Das, T.; Zhang, L.; Li, Y.; Ming, Y.; Ting, S.; Hu, X.; Yue, C.Y. Triggering compatibility and dispersion by selective plasma functionalized carbon nanotubes to fabricate tough and enhanced Nylon 12 composites. Polymer 2015, 58, 153–161. [Google Scholar] [CrossRef]
Sample | NC | NC_01 | NC_02 | NC_03 | NC_04 | NC_05 |
---|---|---|---|---|---|---|
ID/IG | 1.55 | 1.76 | 1.87 | 1.60 | 1.67 | 1.72 |
Sample | Carbon | Oxygen | Chlorine | Nitrogen | Aluminum |
---|---|---|---|---|---|
atomic % | |||||
NC_01 | 92.7 | 7.3 | - | data | - |
NC_02 | 93.6 | 6.4 | - | traces | - |
NC_03 | 96.5 | 3.0 | 0.5 | - | - |
NC_04 | 96.9 | 2.5 | 0.6 | traces | - |
NC_05 | 75.7 | 13.2 | 3.7 | - | 7.4 |
Sample | C=O | C–O | H2O | Satellite |
---|---|---|---|---|
% of Total O 1s Signal Intensity | ||||
NC_01 | 56.7 | 39.1 | 4.2 | - |
NC_02 | 35.7 | 54.0 | 10.3 | - |
NC_03 | 8.2 | 86.4 | 5.4 | - |
NC_04 | 22.2 | 43.6 | 20.4 | 13.8 |
Sample | Mw × 103 [g/mol] | σy [MPa] | σb [MPa] | σ200% [MPa] | εb [%] | E [MPa] |
---|---|---|---|---|---|---|
PA neat | 29.3±0.2 | 34.7 ± 0.16 | 60.7 ± 4.67 | 36.1 ± 0.26 | 347 ± 21 | 878 ± 50 |
PA/NC_01 | 29.6±0.3 | 30.1 ± 0.61 | 51.5 ± 3.15 | 38.2 ± 0.19 | 309 ± 15 | 742 ± 26 |
PA/NC_02 | 28.5±0.2 | 33.4 ± 0.22 | 53.1 ± 6.40 | 43.7 ± 0.16 | 291 ± 20 | 757 ± 15 |
PA/NC_03 | 29.1±0.2 | 34.8 ± 0.19 | 62.3 ± 1.27 | 43.7 ± 0.19 | 308 ± 5 | 739 ± 28 |
PA/NC_04 | 27.7±0.3 | 42.4 ± 0.29 | 54.2 ± 2.06 | 45.8 ± 0.21 | 272 ± 19 | 1177 ± 72 |
PA/NC_05 | 27.1±0.2 | 43.8 ± 0.16 | 57.0 ± 2.40 | 46.6 ± 0.20 | 284 ± 13 | 1220 ± 61 |
Sample | DSC | DSC | Thermal Stability | ||||||
---|---|---|---|---|---|---|---|---|---|
Heating Cycle | Cooling Cycle | Air | argon | ||||||
Tm [°C] | Tg [°C] | Xc [%] | Tc max [°C] | ΔT [°C] | T5% [°C] | Tmax [°C] | T5% [°C] | Tmax [°C] | |
PA12 | 179 | 46 | 27 | 152 | 27 | 392 | 461 | 425 | 472 |
PA/NC_01 | 173 | 50 | 33 | 152 | 21 | 323 | 455 | 363 | 466 |
PA/NC_02 | 177 | 49 | 34 | 155 | 22 | 382 | 471 | 394 | 469 |
PA/NC_03 | 177 | 49 | 30 | 156 | 21 | 392 | 465 | 415 | 472 |
PA/NC_04 | 178 | 48 | 29 | 158 | 20 | 401 | 465 | 424 | 471 |
PA/NC_05 | 176 | 47 | 30 | 156 | 20 | 416 | 469 | 425 | 471 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwiatkowska, M.; Pełech, R.; Jędrzejewska, A.; Moszyński, D.; Pełech, I. Different Approaches to Oxygen Functionalization of Multi-Walled Carbon Nanotubes and Their Effect on Mechanical and Thermal Properties of Polyamide 12 Based Composites. Polymers 2020, 12, 308. https://doi.org/10.3390/polym12020308
Kwiatkowska M, Pełech R, Jędrzejewska A, Moszyński D, Pełech I. Different Approaches to Oxygen Functionalization of Multi-Walled Carbon Nanotubes and Their Effect on Mechanical and Thermal Properties of Polyamide 12 Based Composites. Polymers. 2020; 12(2):308. https://doi.org/10.3390/polym12020308
Chicago/Turabian StyleKwiatkowska, Magdalena, Robert Pełech, Anna Jędrzejewska, Dariusz Moszyński, and Iwona Pełech. 2020. "Different Approaches to Oxygen Functionalization of Multi-Walled Carbon Nanotubes and Their Effect on Mechanical and Thermal Properties of Polyamide 12 Based Composites" Polymers 12, no. 2: 308. https://doi.org/10.3390/polym12020308
APA StyleKwiatkowska, M., Pełech, R., Jędrzejewska, A., Moszyński, D., & Pełech, I. (2020). Different Approaches to Oxygen Functionalization of Multi-Walled Carbon Nanotubes and Their Effect on Mechanical and Thermal Properties of Polyamide 12 Based Composites. Polymers, 12(2), 308. https://doi.org/10.3390/polym12020308