Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a Promising Polymer Material for Biomedical Applications: A Concise Review
Abstract
:1. Introduction
2. Irradiation
2.1. Crosslinking and Crystallinity
2.2. Aging
2.3. Wear and Mechanical Degradation Mechanism
2.4. Methods for Minimizing Degradation
3. Reinforcements
3.1. Carbon Particles
3.2. Other Reinforced Particles
4. Surface Modifications
4.1. Coating
4.2. Surface Texturing
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Drakopoulos, S.X.; Psarras, G.C.; Forte, G.; Martin-fabiani, I.; Ronca, S. Entanglement dynamics in ultra-high molecular weight polyethylene as revealed by dielectric spectroscopy. Polymer (Guildf.) 2018, 150, 35–43. [Google Scholar] [CrossRef]
- Sobieraj, M.C.; Rimnac, C.M. Ultra high molecular weight polyethylene: Mechanics, morphology, and clinical behavior. J. Mech. Behav. Biomed. Mater. 2009, 2, 433–443. [Google Scholar] [CrossRef] [Green Version]
- Bracco, P.; Bellare, A.; Bistolfi, A.; Affatato, S. Ultra-High Molecular Weight Polyethylene: Influence of the Chemical, Physical and Mechanical Properties on the Wear Behavior. A Review. Materials 2017, 10, 791. [Google Scholar] [CrossRef]
- Kennedy, F.E.; Currier, B.H.; Van Citters, D.W.; Currier, J.H.; Collier, J.P.; Mayor, M.B. Oxidation of Ultra-High Molecular Weight Polyethylene and Its Influence on Contact Fatigue and Pitting of Knee Bearings. Tribol. Trans. 2003, 46, 111–118. [Google Scholar] [CrossRef]
- Barron, D.; Birkinshaw, C. Ultra-high molecular weight polyethylene—Evidence for a three-phase morphology. Polymer (Guildf.) 2008, 49, 3111–3115. [Google Scholar] [CrossRef]
- Wang, A.; Essner, A.; Polineni, V.; Stark, C.; Dumbleton, J. Lubrication and wear of ultra-high molecular weight polyethylene in total joint replacements. Tribol. Int. 1998, 31, 17–33. [Google Scholar] [CrossRef]
- Kurtz, S.M. A Primer on UHMWPE. In UHMWPE Biomaterials Handbook: Ultra High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 1–6. ISBN 9780323354011. [Google Scholar]
- Ruggiero, A.; D’Amato, R.; Gómez, E.; Merola, M. Experimental comparison on tribological pairs UHMWPE/TIAL6V4 alloy, UHMWPE/AISI316L austenitic stainless and UHMWPE/AL2O3 ceramic, under dry and lubricated conditions. Tribol. Int. 2016, 96, 349–360. [Google Scholar] [CrossRef]
- Brach Del Prever, E.M.; Bistolfi, A.; Bracco, P.; Costa, L. UHMWPE for arthroplasty: Past or future? J. Orthop. Traumatol. 2009, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Barrena, E.; Puertolas, J.-A.; Munuera, L.; Konttinen, Y.T. Update on UHMWPE research From the bench to the bedside. Acta Orthop. 2008, 79, 832–840. [Google Scholar] [CrossRef]
- Guedes, R.M. A viscoelastic model for a biomedical ultra-high molecular weight polyethylene using the time–temperature superposition principle. Polym. Test. 2011, 30, 294–302. [Google Scholar] [CrossRef]
- Hirakawa, K.; Bauer, T.W.; Stulberg, B.N.; Wilde, A.H.; Secic, M. Characterization and Comparison of Wear Debris from Failed Total Hip Implants of Different Types*. J. Bone Jt. Surg. 1996, 78, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
- SYCHTERZ, C.J.; MOON, K.H.; HASHIMOTO, Y.; TEREFENKO, K.M.; ENGH, C.A.; BAUER, T.W. Wear of Polyethylene Cups in Total Hip Arthroplasty. A Study of Specimens Retrieved Post Mortem*. J. Bone Jt. Surg. 1996, 78, 1193–1200. [Google Scholar] [CrossRef] [PubMed]
- Zeman, J.; Ranuša, M.; Vrbka, M.; Gallo, J.; Křupka, I.; Hartl, M. UHMWPE acetabular cup creep deformation during the run-in phase of THA’s life cycle. J. Mech. Behav. Biomed. Mater. 2018, 87, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chakravartula, A.; Pruitt, L.; Komvopoulos, K. Tribological and Nanomechanical Properties of Unmodified and Crosslinked Ultra-High Molecular Weight Polyethylene for Total Joint Replacements. J. Tribol. 2004, 126, 386. [Google Scholar] [CrossRef]
- Sethi, R.K.; Neavyn, M.J.; Rubash, H.E.; Shanbhag, A.S. Macrophage response to cross-linked and conventional UHMWPE. Biomaterials 2003, 24, 2561–2573. [Google Scholar] [CrossRef]
- Eddoumy, F.; Addiego, F.; Celis, J.P.; Buchheit, O.; Berradja, A.; Muller, R.; Toniazzo, V.; Ruch, D. Reciprocating sliding of uniaxially-stretched ultra-high molecular weight polyethylene for medical device applications. Wear 2011, 272, 50–61. [Google Scholar] [CrossRef]
- Lewis, G. Properties of crosslinked ultra-high-molecular-weight polyethylene. Biomaterials 2001, 22, 371–401. [Google Scholar] [CrossRef]
- Park, K.; Mishra, S.; Lewis, G.; Losby, J.; Fan, Z.; Park, J.B. Quasi-static and dynamic nanoindentation studies on highly crosslinked ultra-high-molecular-weight polyethylene. Biomaterials 2004, 25, 2427–2436. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Ghali, B.W.; Lozynsky, A.J.; Oral, E.; Muratoglu, O.K. Wear resistant UHMWPE with high toughness by high temperature melting and subsequent radiation cross-linking. Polymer (Guildf.) 2011, 52, 1155–1162. [Google Scholar] [CrossRef]
- Atwood, S.A.; Van Citters, D.W.; Patten, E.W.; Furmanski, J.; Ries, M.D.; Pruitt, L.A. Tradeoffs amongst fatigue, wear, and oxidation resistance of cross-linked ultra-high molecular weight polyethylene. J. Mech. Behav. Biomed. Mater. 2011, 4, 1033–1045. [Google Scholar] [CrossRef]
- Kanaga Karuppiah, K.S.; Bruck, A.L.; Sundararajan, S.; Wang, J.; Lin, Z.; Xu, Z.-H.; Li, X. Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity. Acta Biomater. 2008, 4, 1401–1410. [Google Scholar] [CrossRef] [PubMed]
- Fouad, H.; Mourad, A.-H.I.; Barton, D.C. Effect of pre-heat treatment on the static and dynamic thermo-mechanical properties of ultra-high molecular weight polyethylene. Polym. Test. 2005, 24, 549–556. [Google Scholar] [CrossRef]
- Lewis, G.; Fencl, R.M.; Carroll, M.; Collins, T. The relative influence of five variables on the in vitro wear rate of uncrosslinked UHMWPE acetabular cup liners. Biomaterials 2003, 24, 1925–1935. [Google Scholar] [CrossRef]
- Bruck, A.L.; Kanaga Karuppiah, K.S.; Sundararajan, S.; Wang, J.; Lin, Z. Friction and wear behavior of ultrahigh molecular weight polyethylene as a function of crystallinity in the presence of the phospholipid dipalmitoyl phosphatidylcholine. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 93B, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Di, Y.; Gang, X.; Chunhua, C. The effect of gamma irradiation on the tribological properties of UHMWPE composite filled with HDPE. J. Thermoplast. Compos. Mater. 2014, 27, 1045–1053. [Google Scholar] [CrossRef]
- Zhang, J. Surface modification of ultra-high-molecular-weight polyethylene by argon plasma. J. Thermoplast. Compos. Mater. 2014, 27, 758–764. [Google Scholar] [CrossRef]
- Liu, H.; Pei, Y.; Xie, D.; Deng, X.; Leng, Y.X.; Jin, Y.; Huang, N. Surface modification of ultra-high molecular weight polyethylene (UHMWPE) by argon plasma. Appl. Surf. Sci. 2010, 256, 3941–3945. [Google Scholar] [CrossRef]
- Kovalchenko, A.; Ajayi, O.; Erdemir, A.; Fenske, G.; Etsion, I. The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact. Tribol. Int. 2005, 38, 219–225. [Google Scholar] [CrossRef]
- Etsion, I. Improving Tribological Performance of Mechanical Components by Laser Surface Texturing. Tribol. Lett. 2004, 17, 733–737. [Google Scholar] [CrossRef]
- Chang, N.; Bellare, A.; Cohen, R.; Spector, M. Wear behavior of bulk oriented and fiber reinforced UHMWPE. Wear 2000, 241, 109–117. [Google Scholar] [CrossRef]
- Ge, S.; Wang, S.; Huang, X. Increasing the wear resistance of UHMWPE acetabular cups by adding natural biocompatible particles. Wear 2009, 267, 770–776. [Google Scholar] [CrossRef]
- Plumlee, K.; Schwartz, C.J. Improved wear resistance of orthopaedic UHMWPE by reinforcement with zirconium particles. Wear 2009, 267, 710–717. [Google Scholar] [CrossRef]
- Pruitt, L.A. Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene. Biomaterials 2005, 26, 905–915. [Google Scholar] [CrossRef]
- Puértolas, J.A.; Kurtz, S.M. Evaluation of carbon nanotubes and graphene as reinforcements for UHMWPE-based composites in arthroplastic applications: A review. J. Mech. Behav. Biomed. Mater. 2014, 39, 129–145. [Google Scholar] [CrossRef]
- Baena, J.; Wu, J.; Peng, Z. Wear Performance of UHMWPE and Reinforced UHMWPE Composites in Arthroplasty Applications: A Review. Lubricants 2015, 3, 413–436. [Google Scholar] [CrossRef] [Green Version]
- Sirimamilla, P.A.; Rimnac, C.M.; Furmanski, J. Viscoplastic crack initiation and propagation in crosslinked UHMWPE from clinically relevant notches up to 0.5 mm radius. J. Mech. Behav. Biomed. Mater. 2018, 77, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Gul, R.M.; Fung, K.; Doshi, B.N.; Oral, E.; Muratoglu, O.K. Surface cross-linked UHMWPE using peroxides. J. Orthop. Res. 2017, 35, 2551–2556. [Google Scholar] [CrossRef] [PubMed]
- Mckellop, H.; Shen, F.-W.; Lu, B.; Campbell, P.; Salovey, R. Development of an Extremely Wear-Resistant Ultra High Molecular Weight Polyethylene for Total Hip Replacements; Orthopacdic Research Socicty: Rosemont, IL, USA, 1999; Volume 17. [Google Scholar]
- Muratoglu, O.K.; Bragdon, C.R.; O’Connor, D.O.; Jasty, M.; Harris, W.H.; Gul, R.; McGarry, F. Unified wear model for highly crosslinked ultra-high molecular weight polyethylenes (UHMWPE). Biomaterials 1999, 20, 1463–1470. [Google Scholar] [CrossRef]
- Atkinson, J.R.; Cicek, R.Z. Silane cross-linked polyethylene for prosthetic applications Part I. Certain physical and mechanical properties related to the nature of the material. Biomaterials 1983, 4, 267–275. [Google Scholar] [CrossRef]
- Atkinson, J.R.; Cicek, R.Z. Silane crosslinked polyethylene for prosthetic applications: II. Creep and wear behaviour and a preliminary moulding test. Biomaterials 1984, 5, 326–335. [Google Scholar] [CrossRef]
- Boer, J. d.; Pennings, A.J. Crosslinking of ultra-high molecular weight polyethylene in the melt by means of 2,5-dimethyl-2,5-bis(tert-butyldioxy)-3-hexyne: 2. Crystallization behaviour and mechanical properties. Polymer (Guildf.) 1982, 23, 1944–1952. [Google Scholar] [CrossRef]
- Oral, E.; Muratoglu, O.K. Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications. Nucl. Instrum. Methods Phys. Res. B 2007, 265, 18–22. [Google Scholar] [CrossRef] [Green Version]
- Bracco, P.; Brunella, V.; Luda, M.P.; Zanetti, M.; Costa, L. Radiation-induced crosslinking of UHMWPE in the presence of co-agents: Chemical and mechanical characterisation. Polymer (Guildf.) 2005, 46, 10648–10657. [Google Scholar] [CrossRef]
- Costa, L.; Luda, M.P.; Trossarelli, L.; Brach del Prever, E.M.; Crova, M.; Gallinaro, P. Oxidation in orthopaedic UHMWPE sterilized by gamma-radiation and ethylene oxide. Biomaterials 1998, 19, 659–668. [Google Scholar] [CrossRef]
- Premnath, V.; Harris, W.H.; Jasty, M.; Merrill, E.W. Gamma sterilization of UHMWPE articular implants: An analysis of the oxidation problem. Biomaterials 1996, 17, 1741–1753. [Google Scholar] [CrossRef]
- Reinitz, S.D.; Currier, B.H.; Levine, R.A.; Van Citters, D.W. Crosslink density, oxidation and chain scission in retrieved, highly cross-linked UHMWPE tibial bearings. Biomaterials 2014, 35, 4436–4440. [Google Scholar] [CrossRef]
- Baker, D.A.; Hastings, R.S.; Pruitt, L. Study of fatigue resistance of chemical and radiation crosslinked medical grade ultrahigh molecular weight polyethylene. J. Biomed. Mater. Res. 1999, 46, 573–581. [Google Scholar] [CrossRef]
- Pruitt, L.; Koo, J.; Rimnac, C.M.; Suresh, S.; Wright, T.M. Cyclic compressive loading results in fatigue cracks in ultra high molecular weight polyethylene. J. Orthop. Res. 1995, 13, 143–146. [Google Scholar] [CrossRef]
- Affatato, S.; Bordini, B.; Fagnano, C.; Taddei, P.; Tinti, A.; Toni, A. Effects of the sterilisation method on the wear of UHMWPE acetabular cups tested in a hip joint simulator. Biomaterials 2002, 23, 1439–1446. [Google Scholar] [CrossRef]
- Jahan, M.S.; Walters, B.M.; Riahinasab, T.; Gnawali, R.; Adhikari, D.; Trieu, H. A comparative study of radiation effects in medical-grade polymers: UHMWPE, PCU and PEEK. Radiat. Phys. Chem. 2016, 118, 96–101. [Google Scholar] [CrossRef]
- Chiesa, R.; Tanzi, M.C.; Alfonsi, S.; Paracchini, L.; Moscatelli, M.; Cigada, A. Enhanced wear performance of highly crosslinked UHMWPE for artificial joints. J. Biomed. Mater. Res. 2000, 50, 381–387. [Google Scholar] [CrossRef]
- Muratoglu, O.K.; Harris, W.H. Identification and quantification of irradiation in UHMWPE throughtrans-vinylene yield. J. Biomed. Mater. Res. 2001, 56, 584–592. [Google Scholar] [CrossRef]
- Slouf, M.; Mikesova, J.; Fencl, J.; Stara, H.; Baldrian, J.; Horak, Z. Impact of Dose-Rate on Rheology, Structure and Wear of Irradiated UHMWPE. J. Macromol. Sci. Part B 2009, 48, 587–603. [Google Scholar] [CrossRef]
- Saša, A.; Richard, R.E. Crystallization Behavior of Ultrahigh Molecular Weight Polyethylene as a Function of in Vacuo γ-Irradiation. Macromolecules 2001, 34, 896–906. [Google Scholar]
- Oral, E.; Godleski-Beckos, C.; Ghali, B.W.; Lozynsky, A.J.; Muratoglu, O.K. Effect of cross-link density on the high pressure crystallization of UHMWPE. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 90, 720–729. [Google Scholar] [CrossRef] [Green Version]
- Oral, E.; Beckos, C.G.; Muratoglu, O.K. Free radical elimination in irradiated uhmwpe through crystal mobility in phase transition to the hexagonal phase. Polymer (Guildf.) 2008, 49, 4733–4739. [Google Scholar] [CrossRef] [Green Version]
- Fung, M.; Bowsher, J.G.; Van Citters, D.W. Variation of mechanical properties and oxidation with radiation dose and source in highly crosslinked remelted UHMWPE. J. Mech. Behav. Biomed. Mater. 2018, 82, 112–119. [Google Scholar] [CrossRef]
- Premnath, V.; Bellare, A.; Merrill, E.; Jasty, M.; Harris, W. Molecular rearrangements in ultra high molecular weight polyethylene after irradiation and long-term storage in air. Polymer (Guildf.) 1999, 40, 2215–2229. [Google Scholar] [CrossRef]
- Streicher, R.M. Sterilization and long-term aging of medical-grade UHMWPE. Radiat. Phys. Chem. 1995, 46, 893–896. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Muratoglu, O.K.; Evans, M.; Edidin, A.A. Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials 1999, 20, 1659–1688. [Google Scholar] [CrossRef]
- Dai, D.; Shi, M. Effects of electron beam irradiation on structure and properties of ultra-high molecular weight polyethylene fiber. J. Ind. Text. 2017, 47. [Google Scholar] [CrossRef]
- Kömmling, A.; Chatzigiannakis, E.; Beckmann, J.; Wachtendorf, V.; von der Ehe, K.; Braun, U.; Jaunich, M.; Schade, U.; Wolff, D. Discoloration Effects of High-Dose γ-Irradiation and Long-Term Thermal Aging of (U)HMW-PE. Int. J. Polym. Sci. 2017, 2017, 1362491. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Xu, L.; Hu, J.; Wang, M.; Wu, G. Radiation-induced oxidation of ultra-high molecular weight polyethylene (UHMWPE) powder by gamma rays and electron beams: A clear dependence of dose rate. Radiat. Phys. Chem. 2015, 115, 88–96. [Google Scholar] [CrossRef]
- Oral, E.; Godleski Beckos, C.; Malhi, A.S.; Muratoglu, O.K. The effects of high dose irradiation on the cross-linking of vitamin E-blended ultrahigh molecular weight polyethylene. Biomaterials 2008, 29, 3557–3560. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.; Xiong, D. The influence of irradiation dose on mechanical properties and wear resistance of molded and extruded ultra high molecular weight polyethylene. J. Mech. Behav. Biomed. Mater. 2012, 9, 73–82. [Google Scholar] [CrossRef]
- Lednický, F.; Šlouf, M.; Kratochvíl, J.; Baldrian, J.; Novotná, D. Crystalline Character and Microhardness of Gamma-Irradiated and Thermally Treated UHMWPE. J. Macromol. Sci. Part B 2007, 46, 521–531. [Google Scholar] [CrossRef]
- Stephens, C.P.; Benson, R.S.; Esther Martinez-Pardo, M.; Barker, E.D.; Walker, J.B.; Stephens, T.P. The effect of dose rate on the crystalline lamellar thickness distribution in gamma-radiation of UHMWPE. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 2005, 236, 540–545. [Google Scholar] [CrossRef]
- Shi, W.; Li, X.Y.; Dong, H. Preliminary investigation into the load bearing capacity of ion beam surface modified UHMWPE. J. Mater. Sci. 2004, 39, 3183–3186. [Google Scholar] [CrossRef]
- Wang, S.; Ge, S. The mechanical property and tribological behavior of UHMWPE: Effect of molding pressure. Wear 2007, 263, 949–956. [Google Scholar] [CrossRef]
- Oral, E.; Christensen, S.D.; Malhi, A.S.; Wannomae, K.K.; Muratoglu, O.K. Wear Resistance and Mechanical Properties of Highly Cross-linked, Ultrahigh–Molecular Weight Polyethylene Doped With Vitamin E. J. Arthroplasty 2006, 21, 580–591. [Google Scholar] [CrossRef] [Green Version]
- Chiesa, R.; Moscatelli, M.; Giordano, C.; Siccardi, F.; Cigada, A. Influence of heat treatment on structural, mechanical and wear properties of crosslinked UHMWPE. J. Appl. Biomater. Biomech. 2004, 2, 20–28. [Google Scholar] [PubMed]
- Buchanan, F.J.; White, J.R.; Sim, B.; Downes, S. The influence of gamma irradiation and aging on degradation mechanisms of ultra-high molecular weight polyethylene. J. Mater. Sci. Mater. Med. 2001, 12, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Burroughs, B.R.; Blanchet, T.A. The effect of pre-irradiation vacuum storage on the oxidation and wear of radiation sterilized UHMWPE. Wear 2006, 261, 1277–1284. [Google Scholar] [CrossRef]
- Oonishi, H.; Kim, S.C.; Oonishi, H.; Kyomoto, M.; Masuda, S. Oxidation and wear of 100-Mrad cross-linked polyethylene shelf-aged for 30 years. Clin. Orthop. Relat. Res. 2008, 466, 347–352. [Google Scholar] [CrossRef] [Green Version]
- Buchanan, F.J.; Sim, B.; Downes, S. Influence of packaging conditions on the properties of gamma-irradiated UHMWPE following accelerated ageing and shelf ageing. Biomaterials 1999, 20, 823–837. [Google Scholar] [CrossRef]
- Regis, M.; Bracco, P.; Giorgini, L.; Fusi, S.; Dalla Pria, P.; Costa, L.; Schmid, C. Correlation between in vivo stresses and oxidation of UHMWPE in total hip arthroplasty. J. Mater. Sci. Mater. Med. 2014, 25, 2185–2192. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Zhang, T.; Zhu, S.-Q.; Wang, L.-D.; Liu, X.; Wang, Q.-L.; Song, Y.-J. Fabrication and spectroscopic investigation of branched silver nanowires and nanomeshworks. Nanoscale Res. Lett. 2012, 7, 596. [Google Scholar] [CrossRef] [Green Version]
- Medel, F.; Gómez-Barrena, E.; García-Alvarez, F.; Ríos, R.; Gracia-Villa, L.; Puértolas, J.A. Fractography evolution in accelerated aging of UHMWPE after gamma irradiation in air. Biomaterials 2004, 25, 9–21. [Google Scholar] [CrossRef]
- Maher, S.A.; Furman, B.D.; Babalola, O.M.; Cottrell, J.M.; Wright, T.M. Effect of crosslinking, remelting, and aging on UHMWPE damage in a linear experimental wear model. J. Orthop. Res. 2007, 25, 849–857. [Google Scholar] [CrossRef]
- Fisher, J.; Chan, K.L.; Hailey, J.L.; Shaw, D.; Stone, M. Preliminary study of the effect of aging following irradiation on the wear of ultrahigh-molecular-weight polyethylene. J. Arthroplasty 1995, 10, 689–692. [Google Scholar] [CrossRef]
- Goldman, M.; Gronsky, R.; Ranganathan, R.; Pruitt, L. The effects of gamma radiation sterilization and ageing on the structure and morphology of medical grade ultra high molecular weight polyethylene. Polymer (Guildf.) 1996, 37, 2909–2913. [Google Scholar] [CrossRef]
- Nusbaum, H.J.; Rose, R.M.; Paul, I.L.; Crugnola, A.M.; Radin, E.L. Wear mechanisms for ultrahigh molecular weight polyethylene in the total hip prosthesis. J. Appl. Polym. Sci. 1979, 23, 777–789. [Google Scholar] [CrossRef]
- Lee, K.-Y.; Lee, K.H. Wear of shelf-aged UHMWPE acetabular liners. Wear 1999, 225–229, 728–733. [Google Scholar] [CrossRef]
- Bell, C.J.; Walker, P.S.; Abeysundera, M.R.; Simmons, J.M.H.; King, P.M.; Blunn, G.W. Effect of oxidation on delamination of ultrahigh-molecular-weight polyethylene tibial components. J. Arthroplasty 1998, 13, 280–290. [Google Scholar] [CrossRef]
- Baker, D.; Hastings, R.; Pruitt, L. Compression and tension fatigue resistance of medical grade ultra high molecular weight polyethylene: The effect of morphology, sterilization, aging and temperature. Polymer (Guildf.) 2000, 41, 795–808. [Google Scholar] [CrossRef]
- Chang, T.; Yuan, C.; Guo, Z. Tribological behavior of aged UHMWPE under water-lubricated condition. Tribol. Int. 2019, 133, 1–11. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Mazzucco, D.; Rimnac, C.M.; Schroeder, D. Anisotropy and oxidative resistance of highly crosslinked UHMWPE after deformation processing by solid-state ram extrusion. Biomaterials 2006, 27, 24–34. [Google Scholar] [CrossRef]
- Kang, L.; Galvin, A.L.; Brown, T.D.; Jin, Z.; Fisher, J. Quantification of the effect of cross-shear on the wear of conventional and highly cross-linked UHMWPE. J. Biomech. 2008, 41, 340–346. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Sun, D.C.; Yau, S.-S.; Edwards, B.; Sokol, M.; Essner, A.; Polineni, V.K.; Stark, C.; Dumbleton, J.H. Orientation softening in the deformation and wear of ultra-high molecular weight polyethylene. Wear 1997, 203–204, 230–241. [Google Scholar] [CrossRef]
- Plumlee, K.; Schwartz, C.J. Investigating UHMWPE wear mechanisms by decomposing wear debris distributions. Wear 2011, 271, 2208–2212. [Google Scholar] [CrossRef]
- Wang, A.; Stark, C.; Dumbleton, J.H. Mechanistic and Morphological Origins of Ultra-High Molecular Weight Polyethylene Wear Debris in Total Joint Replacement Prostheses. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1996, 210, 141–155. [Google Scholar] [CrossRef]
- Wang, A. A unified theory of wear for ultra-high molecular weight polyethylene in multi-directional sliding. Wear 2001, 248, 38–47. [Google Scholar] [CrossRef]
- Edidin, A.; Jewett, C.; Kalinowski, A.; Kwarteng, K.; Kurtz, S. Degradation of mechanical behavior in UHMWPE after natural and accelerated aging. Biomaterials 2000, 21, 1451–1460. [Google Scholar] [CrossRef]
- Huot, J.C.; Van Citters, D.W.; Currier, J.H.; Collier, J.P. The effect of radiation dose on the tensile and impact toughness of highly cross-linked and remelted ultrahigh-molecular weight polyethylenes. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011, 97B, 327–333. [Google Scholar] [CrossRef]
- Toyen, D.; Wimolmala, E.; Sombatsompop, N.; Markpin, T.; Saenboonruang, K. Sm2O3/UHMWPE composites for radiation shielding applications: Mechanical and dielectric properties under gamma irradiation and thermal neutron shielding. Radiat. Phys. Chem. 2019, 164, 108366. [Google Scholar] [CrossRef]
- Bracco, P.; Brach del Prever, E.M.; Cannas, M.; Luda, M.P.; Costa, L. Oxidation behaviour in prosthetic UHMWPE components sterilised with high energy radiation in a low-oxygen environment. Polym. Degrad. Stab. 2006, 91, 2030–2038. [Google Scholar] [CrossRef]
- Costa, L.; Carpentieri, I.; Bracco, P. Post electron-beam irradiation oxidation of orthopaedic Ultra-High Molecular Weight Polyethylene (UHMWPE) stabilized with vitamin E. Polym. Degrad. Stab. 2009, 94, 1542–1547. [Google Scholar] [CrossRef]
- Muratoglu, O.K.; Bragdon, C.R.; Connor, D.O.O.; Jasty, M.; Harris, W.H. A Novel Method of Cross-Linking Ultra-High- Molecular-Weight Polyethylene to Improve Wear, Reduce Oxidation, and Retain Mechanical Properties Recipient of the 1999 HAP Paul Award. J. Arthroplasty 2001, 16, 149–160. [Google Scholar] [CrossRef]
- Goosen, J.H.M.; Verheyen, C.C.P.M.; Kollen, B.J.; Tulp, N.J.A. In vivo wear reduction of argon compared to air sterilized UHMW-polyethylene liners. Arch. Orthop. Trauma Surg. 2009, 129, 879–885. [Google Scholar] [CrossRef]
- Faris, P.M.; Ritter, M.A.; Pierce, A.L.; Davis, K.E.; Faris, G.W. Polyethylene Sterilization and Production Affects Wear in Total Hip Arthroplasties. Clin. Orthop. Relat. Res. 2006, 453, 305–308. [Google Scholar] [CrossRef]
- Bankston, A.B.; Cates, H.; Ritter, M.A.; Keating, E.M.; Faris, P.M. Polyethylene wear in total hip arthroplasty. Clin. Orthop. Relat. Res. 1995, 317, 7–13. [Google Scholar]
- Affatato, S.; Ruggiero, A.; Jaber, S.; Merola, M.; Bracco, P. Wear Behaviours and Oxidation Effects on Different UHMWPE Acetabular Cups Using a Hip Joint Simulator. Materials 2018, 11, 433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melk, L.; Emami, N. Mechanical and thermal performances of UHMWPE blended vitamin E reinforced carbon nanoparticle composites. Compos. Part B Eng. 2018, 146, 20–27. [Google Scholar] [CrossRef]
- Doshi, B.; Ward, J.S.; Oral, E.; Muratoglu, O.K. Fatigue toughness of irradiated vitamin E/UHMWPE blends. J. Orthop. Res. 2016, 34, 1514–1520. [Google Scholar] [CrossRef]
- Oral, E.; Godleski Beckos, C.A.; Lozynsky, A.J.; Malhi, A.S.; Muratoglu, O.K. Improved resistance to wear and fatigue fracture in high pressure crystallized vitamin E-containing ultra-high molecular weight polyethylene. Biomaterials 2009, 30, 1870–1880. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.E.; Ribeiro, M.R.; Cramail, H.; Lourenço, J.P.; Lorenzo, V.; Pérez, E.; Cerrada, M.L. Extraordinary mechanical performance in disentangled UHMWPE films processed by compression molding. J. Mech. Behav. Biomed. Mater. 2019, 90, 202–207. [Google Scholar] [CrossRef]
- Lim, K.L.K.; Ishak, Z.A.M.; Ishiaku, U.S.; Fuad, A.M.Y.; Yusof, A.H.; Czigany, T.; Pukanzsky, B.; Ogunniyi, D.S. High density polyethylene/ultra high molecular weight polyethylene blend. II. Effect of hydroxyapatite on processing, thermal, and mechanical properties. J. Appl. Polym. Sci. 2006, 100, 3931–3942. [Google Scholar] [CrossRef]
- Wood, W.; Li, B.; Zhong, W.-H. Influence of phase morphology on the sliding wear of polyethylene blends filled with carbon nanofibers. Polym. Eng. Sci. 2010, 50, 613–623. [Google Scholar] [CrossRef]
- Rezaei, M.; Ebrahimi, N.G.; Kontopoulou, M. Thermal properties, rheology and sintering of ultra high molecular weight polyethylene and its composites with polyethylene terephthalate. Polym. Eng. Sci. 2005, 45, 678–686. [Google Scholar] [CrossRef]
- Ruan, S.L.; Gao, P.; Yang, X.G.; Yu, T.X. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer (Guildf.) 2003, 44, 5643–5654. [Google Scholar] [CrossRef]
- Rezaei, M.; Shirzad, A.; Golshan Ebrahimi, N.; Kontopoulou, M. Surface modification of ultra-high-molecular-weight polyethylene. II. Effect on the physicomechanical and tribological properties of ultra-high-molecular-weight polyethylene/poly(ethylene terephthalate) composites. J. Appl. Polym. Sci. 2006, 99, 2352–2358. [Google Scholar] [CrossRef]
- Clark, A.C.; Ho, S.P.; LaBerge, M. Conductive composite of UHMWPE and CB as a dynamic contact analysis sensor. Tribol. Int. 2006, 39, 1327–1335. [Google Scholar] [CrossRef]
- Xue, Y.; Wu, W.; Jacobs, O.; Schädel, B. Tribological behaviour of UHMWPE/HDPE blends reinforced with multi-wall carbon nanotubes. Polym. Test. 2006, 25, 221–229. [Google Scholar] [CrossRef]
- Fang, L.; Gao, P.; Leng, Y. High strength and bioactive hydroxyapatite nano-particles reinforced ultrahigh molecular weight polyethylene. Compos. Part B Eng. 2007, 38, 345–351. [Google Scholar] [CrossRef]
- Xiong, D.; Lin, J.; Fan, D.; Jin, Z. Wear of nano-TiO2/UHMWPE composites radiated by gamma ray under physiological saline water lubrication. J. Mater. Sci. Mater. Med. 2007, 18, 2131–2135. [Google Scholar] [CrossRef]
- Zoo, Y.-S.; An, J.-W.; Lim, D.-P.; Lim, D.-S. Effect of Carbon Nanotube Addition on Tribological Behavior of UHMWPE. Tribol. Lett. 2004, 16, 305–309. [Google Scholar] [CrossRef]
- Chang, B.P.; Akil, H.M.; Nasir, R.M.; Nurdijati, S. Mechanical and Antibacterial Properties of Treated and Untreated Zinc Oxide filled UHMWPE Composites. J. Thermoplast. Compos. Mater. 2011, 24, 653–667. [Google Scholar] [CrossRef]
- Senatov, F.S.; Gorshenkov, M.V.; Kaloshkin, S.D.; Tcherdyntsev, V.V.; Anisimova, N.Y.; Kopylov, A.N.; Kiselevsky, M.V. Biocompatible polymer composites based on ultrahigh molecular weight polyethylene perspective for cartilage defects replacement. J. Alloys Compd. 2014, 586, S544–S547. [Google Scholar] [CrossRef]
- Xiong, D.S.; Wang, N.; Lin, J.M.; Zhu, H.G.; Fan, D.L. Tribological Properties of UHMWPE Composites Filled with Nano-Powder of SiO2 Sliding against Ti-6Al-4V. Key Eng. Mater. 2005, 288–289, 629–632. [Google Scholar] [CrossRef]
- Macuvele, D.L.P.; Nones, J.; Matsinhe, J.V.; Lima, M.M.; Soares, C.; Fiori, M.A.; Riella, H.G. Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review. Mater. Sci. Eng. C 2017, 76, 1248–1262. [Google Scholar] [CrossRef]
- Meng, L.; Li, W.; Ma, R.; Huang, M.; Wang, J.; Luo, Y.; Wang, J.; Xia, K. Long UHMWPE fibers reinforced rigid polyurethane composites: An investigation in mechanical properties. Eur. Polym. J. 2018, 105, 55–60. [Google Scholar] [CrossRef]
- Khasraghi, S.S.; Rezaei, M. Preparation and characterization of UHMWPE/HDPE/MWCNT melt-blended nanocomposites. J. Thermoplast. Compos. Mater. 2015, 28, 305–326. [Google Scholar] [CrossRef]
- Vega, J.F.; Martínez-Salazar, J.; Trujillo, M.; Arnal, M.L.; Müller, A.J.; Bredeau, S.; Dubois, P. Rheology, Processing, Tensile Properties, and Crystallization of Polyethylene/Carbon Nanotube Nanocomposites. Macromolecules 2009, 42, 4719–4727. [Google Scholar] [CrossRef]
- Liu, Y.; Sinha, S.K. Wear performances of UHMWPE composites with nacre and CNTs, and PFPE coatings for bio-medical applications. Wear 2013, 300, 44–54. [Google Scholar] [CrossRef]
- Golchin, A.; Villain, A.; Emami, N. Tribological behaviour of nanodiamond reinforced UHMWPE in water-lubricated contacts. Tribol. Int. 2017, 110, 195–200. [Google Scholar] [CrossRef]
- Baliga, B.R.; Reddy, P.; Pandey, P. Synthesis and Wear Characterization of CNF-UHMWPE Nanocomposites for Orthopaedic Applications. Mater. Today Proc. 2018, 5, 20842–20848. [Google Scholar] [CrossRef]
- Panin, S.V.; Kornienko, L.A.; Alexenko, V.O.; Buslovich, D.G.; Bochkareva, S.A.; Lyukshin, B.A. Increasing Wear Resistance of UHMWPE by Loading Enforcing Carbon Fibers: Effect of Irreversible and Elastic Deformation, Friction Heating, and Filler Size. Materials 2020, 13, 338. [Google Scholar] [CrossRef] [Green Version]
- Galetz, M.C.; Blaβ, T.; Ruckdäschel, H.; Sandler, J.K.W.; Altstädt, V.; Glatzel, U. Carbon nanofibre-reinforced ultrahigh molecular weight polyethylene for tribological applications. J. Appl. Polym. Sci. 2007, 104, 4173–4181. [Google Scholar] [CrossRef]
- Sui, G.; Zhong, W.H.; Ren, X.; Wang, X.Q.; Yang, X.P. Structure, mechanical properties and friction behavior of UHMWPE/HDPE/carbon nanofibers. Mater. Chem. Phys. 2009, 115, 404–412. [Google Scholar] [CrossRef]
- Zulkifli, M.F.M.; Stolk, J.; Heisserer, U.; Yong, A.T.-M.; Li, Z.; Hu, X.M. Strategic Positioning of carbon fiber layers in an UHMwPE Ballistic Hybrid Composite Panel. Int. J. Impact Eng. 2019, 129, 119–127. [Google Scholar] [CrossRef]
- Dayyoub, T.; Maksimkin, A.V.; Kaloshkin, S.; Kolesnikov, E.; Chukov, D.; Dyachkova, T.P.; Gutnik, I. The structure and mechanical properties of the UHMWPE films modified by the mixture of graphene nanoplates with polyaniline. Polymers 2018, 11, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aliyu, I.K.; Mohammed, A.S.; Al-Qutub, A. Tribological performance of ultra high molecular weight polyethylene nanocomposites reinforced with graphene nanoplatelets. Polym. Compos. 2019, 40, E1301–E1311. [Google Scholar] [CrossRef]
- Alam, F.; Choosri, M.; Gupta, T.K.; Varadarajan, K.M.; Choi, D.; Kumar, S. Electrical, mechanical and thermal properties of graphene nanoplatelets reinforced UHMWPE nanocomposites. Mater. Sci. Eng. B 2019, 241, 82–91. [Google Scholar] [CrossRef]
- Maksimkin, A.; Nematulloev, S.; Chukov, D.; Danilov, V.; Senatov, F. Bulk Oriented UHMWPE/FMWCNT Films for Tribological Applications. Polymers 2017, 9, 629. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cao, C.; Chen, X.; Ren, S.; Chen, Y.; Yu, D.; Chen, X. Orientation and Dispersion Evolution of Carbon Nanotubes in Ultra High Molecular Weight Polyethylene Composites under Extensional-Shear Coupled Flow: A Dissipative Particle Dynamics Study. Polymers 2019, 11, 154. [Google Scholar] [CrossRef] [Green Version]
- Baena, J.-C.; Peng, Z. Dispersion state of multi-walled carbon nanotubes in the UHMWPE matrix: Effects on the tribological and mechanical response. Polym. Test. 2018, 71, 125–136. [Google Scholar] [CrossRef]
- Chang, B.P.; Akil, H.M.; Nasir, R.M. Mechanical and Tribological Properties of Zeolite-reinforced UHMWPE Composite for Implant Application. Procedia Eng. 2013, 68, 88–94. [Google Scholar] [CrossRef]
- Chen, S.; Li, J.; Wei, L.; Jin, Y.; Shang, H.; Hua, M.; Duan, H. Tribological properties of polyimide-modified UHMWPE for bushing materials of seawater lubricated sliding bearings. Tribol. Int. 2017, 115, 470–476. [Google Scholar] [CrossRef]
- Azam, M.U.; Samad, M.A. A novel organoclay reinforced UHMWPE nanocomposite coating for tribological applications. Prog. Org. Coat. 2018, 118, 97–107. [Google Scholar] [CrossRef]
- Li, Y.; He, H.; Ma, Y.; Geng, Y.; Tan, J. Rheological and mechanical properties of ultrahigh molecular weight polyethylene/high density polyethylene/polyethylene glycol blends. Adv. Ind. Eng. Polym. Res. 2019, 2, 51–60. [Google Scholar] [CrossRef]
- Gürgen, S.; Çelik, O.N.; Kuşhan, M.C. Tribological behavior of UHMWPE matrix composites reinforced with PTFE particles and aramid fibers. Compos. Part B Eng. 2019, 173, 106949. [Google Scholar] [CrossRef]
- Shi, G.; Cao, Z.; Yan, X.; Wang, Q. In-situ fabrication of a UHMWPE nanocomposite reinforced by SiO2 nanospheres and its tribological performance. Mater. Chem. Phys. 2019, 236, 121778. [Google Scholar] [CrossRef]
- Zec, J.; Tomić, N.; Zrilić, M.; Marković, S.; Stojanović, D.; Jančić-Heinemann, R. Processing and characterization of UHMWPE composite fibres with alumina particles in poly(ethylene-vinyl acetate) matrix. J. Thermoplast. Compos. Mater. 2018, 31, 689–708. [Google Scholar] [CrossRef]
- Huang, J.; Qu, S.; Wang, J.; Yang, D.; Duan, K.; Weng, J. Reciprocating sliding wear behavior of alendronate sodium-loaded UHMWPE under different tribological conditions. Mater. Sci. Eng. C 2013, 33, 3001–3009. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.-P.; Md. Akil, H.; Bt. Md. Nasir, R. Comparative study of micro- and nano-ZnO reinforced UHMWPE composites under dry sliding wear. Wear 2013, 297, 1120–1127. [Google Scholar] [CrossRef]
- Dangsheng, X. Friction and wear properties of UHMWPE composites reinforced with carbon fiber. Mater. Lett. 2005, 59, 175–179. [Google Scholar] [CrossRef]
- Fang, L.; Leng, Y.; Gao, P. Processing and mechanical properties of HA/UHMWPE nanocomposites. Biomaterials 2006, 27, 3701–3707. [Google Scholar] [CrossRef]
- Guofang, G.; Huayong, Y.; Xin, F. Tribological properties of kaolin filled UHMWPE composites in unlubricated sliding. Wear 2004, 256, 88–94. [Google Scholar] [CrossRef]
- Peng Chang, B.; Md Akil, H.; Bt Nasir, R.; Khan, A. Optimization on wear performance of UHMWPE composites using response surface methodology. Tribol. Int. 2015, 88, 252–262. [Google Scholar] [CrossRef]
- Prasad, A.J.K.; Yeshvantha, H.S.; Chandrakant Ashok, T.; Jagannadh, G. Basavaraj Studies on the Wear Characteristics of Ultra High Molecular Weight Polyethylene (UHMWPE) Polymer Nanocomposites containing Nano Zinc Oxide. Mater. Today Proc. 2018, 5, 2619–2626. [Google Scholar] [CrossRef]
- Jaggi, H.S.; Satapathy, B.K.; Ray, A.R. Viscoelastic properties correlations to morphological and mechanical response of HDPE/UHMWPE blends. J. Polym. Res. 2014, 21, 482. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Jin, R. Synchronous toughening and reinforcing of polypropylene with ultrahigh-molecular-weight polyethylene via melt blending: Mechanical properties, morphology, and rheology. J. Appl. Polym. Sci. 2006, 100, 3498–3509. [Google Scholar] [CrossRef]
- Visco, A.; Yousef, S.; Galtieri, G.; Nocita, D.; Pistone, A.; Njuguna, J. Thermal, Mechanical and Rheological Behaviors of Nanocomposites Based on UHMWPE/Paraffin Oil/Carbon Nanofiller Obtained by Using Different Dispersion Techniques. JOM 2016, 68, 1078–1089. [Google Scholar] [CrossRef] [Green Version]
- Katsuhisa, T.; Aiko, I.; Shigeya, N.; Masahiro, Y.; Mika, N.; Kana, K. Effect of adding polysilane on melt-flow properties of ultra-high molecular weight PE. J. Appl. Polym. Sci. 2012, 126, E403–E409. [Google Scholar] [CrossRef]
- Lee, E.M.; Oh, Y.S.; Ha, H.S.; Jeong, H.M.; Kim, B.K. Ultra high molecular weight polyethylene/organoclay hybrid nanocomposites. J. Appl. Polym. Sci. 2009, 114, 1529–1534. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Q.; Qi, Z. Unusual rheology behaviour of ultra high molecular weight polyethylene/kaolin composites preparedvia polymerization-filling. Polym. Int. 2003, 52, 1078–1082. [Google Scholar] [CrossRef]
- Gai, J.; Li, H. Influence of organophilic montmorillonite and polypropylene on the rheological behaviors and mechanical properties of ultrahigh molecular weight polyethylene. J. Appl. Polym. Sci. 2007, 105, 1200–1209. [Google Scholar] [CrossRef]
- Firouzi, D.; Youssef, A.; Amer, M.; Srouji, R. A new technique to improve the mechanical and biological performance of ultra high molecular weight polyethylene using a nylon coating. J. Mech. Behav. Biomed. Mater. 2014, 32, 198–209. [Google Scholar] [CrossRef]
- Berumen, J.O.; De la Mora, T.; López-Perrusquia, N.; Jiménez-Palomar, I.; Muhl, S.; Hernández-Navarro, C.; García, E. Structural, chemical and mechanical study of TiAlV film on UHMWPE produced by DC magnetron sputtering. J. Mech. Behav. Biomed. Mater. 2019, 93, 23–30. [Google Scholar] [CrossRef]
- Ruan, F.; Bao, L. Mechanical enhancement of UHMWPE fibers by coating with carbon nanoparticles. Fibers Polym. 2014, 15, 723–728. [Google Scholar] [CrossRef] [Green Version]
- Puértolas, J.A.; Martínez-Nogués, V.; Martínez-Morlanes, M.J.; Mariscal, M.D.; Medel, F.J.; López-Santos, C.; Yubero, F. Improved wear performance of ultra high molecular weight polyethylene coated with hydrogenated diamond like carbon. Wear 2010, 269, 458–465. [Google Scholar] [CrossRef] [Green Version]
- Firouzi, D.; Foucher, D.A.; Bougherara, H. Nylon-coated ultra high molecular weight polyethylene fabric for enhanced penetration resistance. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Navarro, C.H.; Moreno, K.J.; Chávez-Valdez, A.; Louvier-Hernández, F.; García-Miranda, J.S.; Lesso, R.; Arizmendi-Morquecho, A. Friction and wear properties of poly(methyl methacrylate)-hydroxyapatite hybrid coating on UHMWPE substrates. Wear 2012, 282–283, 76–80. [Google Scholar] [CrossRef]
- Hall, R.M.; Bankes, M.J.K.; Blunn, G. Biotribology for joint replacement. Curr. Orthop. 2001, 15, 281–290. [Google Scholar] [CrossRef]
- Costa, H.L.; Hutchings, I.M. Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions. Tribol. Int. 2007, 40, 1227–1238. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Wu, G.-F.; Han, Q.-G.; Fang, L.; Ge, S.-R. Tribological properties of surface dimple-textured by pellet-pressing. Procedia Earth Planet. Sci. 2009, 1, 1513–1518. [Google Scholar]
- Qian, S.; Zhu, D.; Qu, N.; Li, H.; Yan, D. Generating micro-dimples array on the hard chrome-coated surface by modified through mask electrochemical micromachining. Int. J. Adv. Manuf. Technol. 2010, 47, 1121–1127. [Google Scholar] [CrossRef]
- Etsion, I.; Halperin, G.; Brizmer, V.; Kligerman, Y. Experimental Investigation of Laser Surface Textured Parallel Thrust Bearings. Tribol. Lett. 2004, 17, 295–300. [Google Scholar] [CrossRef]
- Pettersson, U.; Jacobson, S. Tribological texturing of steel surfaces with a novel diamond embossing tool technique. Tribol. Int. 2006, 39, 695–700. [Google Scholar] [CrossRef]
- Jithin, S.; Shetye, S.S.; Rodrigues, J.J.; Mhetre, K.S.; Mastud, S.A.; Joshi, S.S. Analysis of electrical discharge texturing using different electrode materials. Adv. Mater. Process. Technol. 2018, 4, 466–479. [Google Scholar] [CrossRef]
- Zhou, R.; Cao, J.; Wang, Q.J.; Meng, F.; Zimowski, K.; Xia, Z.C. Effect of EDT surface texturing on tribological behavior of aluminum sheet. J. Mater. Process. Technol. 2011, 211, 1643–1649. [Google Scholar] [CrossRef]
- Wang, X.; Kato, K.; Adachi, K.; Aizawa, K. Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water. Tribol. Int. 2003, 36, 189–197. [Google Scholar] [CrossRef]
- Yu, H.; Wang, X.; Zhou, F. Geometric Shape Effects of Surface Texture on the Generation of Hydrodynamic Pressure Between Conformal Contacting Surfaces. Tribol. Lett. 2010, 37, 123–130. [Google Scholar] [CrossRef]
- Rapoport, L.; Moshkovich, A.; Perfilyev, V.; Lapsker, I.; Halperin, G.; Itovich, Y.; Etsion, I. Friction and wear of MoS2 films on laser textured steel surfaces. Surf. Coatings Technol. 2008, 202, 3332–3340. [Google Scholar] [CrossRef]
- Amanov, A.; Tsuboi, R.; Oe, H.; Sasaki, S. The influence of bulges produced by laser surface texturing on the sliding friction and wear behavior. Tribol. Int. 2013, 60, 216–223. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, W.; Wang, J.; Wang, X. Comparison of the effects of surface texture on the surfaces of steel and UHMWPE. Tribol. Int. 2013, 65, 138–145. [Google Scholar] [CrossRef]
- Taylor, P.; Dougherty, P.S.M.; Srivastava, G.; Onler, R.; Ozdoganlar, O.B.; Fred, C. Lubrication Enhancement for UHMWPE Sliding Contacts through Surface Texturing. Tribol. Trans. 2015, 58, 79–86. [Google Scholar]
- Riveiro, A.; Soto, R.; del Val, J.; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J. Laser surface modification of ultra-high-molecular-weight polyethylene (UHMWPE) for biomedical applications. Appl. Surf. Sci. 2014, 302, 236–242. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhang, X.G.; Matsoukas, G. Numerical study of surface texturing for improving tribological properties of ultra-high molecular weight polyethylene. Biosurf. Biotribol. 2015, 1, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Kustandi, T.S.; Choo, J.H.; Low, H.Y.; Sinha, S.K. Texturing of UHMWPE surface via NIL for low friction and wear properties. J. Phys. D. Appl. Phys. 2010, 43, 015301. [Google Scholar] [CrossRef]
- Sufyan, M.; Hussain, M.; Ahmad, H.; Abbas, N.; Ashraf, J.; Zahra, N. Bulge micro-textures influence on tribological performance of ultra-high-molecular-weight-polyethylene (UHMWPE) under phosphatidylcholine (Lipid) and bovine serum albumin (BSA) solutions. Biomed. Phys. Eng. Express 2019, 5, 035021. [Google Scholar] [CrossRef]
Property | UHMWPE | HDPE |
---|---|---|
Melting temperature (°C) | 132–138 | 130–137 |
Molecular weight (106 g/mol) | 3.5–7.5 | 0.05–0.25 |
Specific gravity | 0.925–0.945 | 0.952–0.965 |
Poisson’s ratio | 0.46 | 0.40 |
Modulus of elasticity (GPa) | 0.5–0.8 | 0.4–4.0 |
Tensile ultimate strength (MPa) | 39–48 | 22–31 |
Tensile yield strength (MPa) | 21–28 | 26–33 |
Tensile ultimate elongation (%) | 350–525 | 10–1200 |
Degree of crystallinity (%) | 39–75 | 60–80 |
Impact strength (J/m of notch) | 1070 | 21–214 |
Wear Rate (mm3/106 cycles) | 80–100 | 380–400 |
Ref. | Radiation Source | Radiation Dose/Optimum Value | Crystallinity/Crosslinking | Tribological Results | Mechanical Results |
---|---|---|---|---|---|
[96] | Gamma | 50–255 kGy/50 kGy | Impact Toughness-67% Tensile Toughness-64% Elongation-74% | ||
[91] | Gamma | Gel content->650% | Wear rate-35% | ||
[60] | Electron | 25–200 kGy/50 kGy | Crystallinity-110% | Oxidation Index-110% | |
[45] | Electron | 25–100 kGy/25 kGy | branching in 1,7-octadiene-570% | Ultimate Tensile Stress-111% Elongation at break-89.25% | |
[85] | Gamma | 25 kGy | Cross-linking (%)-228% crystallinity-105% | Wear loss-150% | Oxidation index-225% |
[87] | Gamma Gas plasma | 25 kGy | Tension fatigue-Crack inception Gamma air-88% Gamm inert-86% Gas Plasma-99% | ||
[5] | 60Co | 35 kGy | Crystallinity-119% | ||
[95] | Gamma | 25–40 kGy | Crystallinity (%)->116% | Elastic modulus-273% Peak Load-90% Ultimate load-41% | |
[55] | Gamma irradiated in N2 and air | 25 kGy, 50 kGy, 100 kGy/100 kGy at 2.5 k Gy/h dose rate | Gel content (%)-164% Extract fraction (%)-27% Swell ratio-24% | Relative wear rate-140% at 50 kGy | Oxidation index-200% Trans-vinylene index-112% At 25 k Gy/h the values are lower |
[59] | Electron-beam | 50, 75 &100 kGy/50 kGy | Crosslink density (dm3/mole)-116% | Tensile strength (MPa)-103% Toughness-82% Elongation-83% Transvinylene index-102% | |
[97] | Gamma | 35 & 70 kGy/70 kGy | Tensile modulus-86.6% Tensile strength-95.4% Hardness-103.6% Elongation at break-58.1% | ||
[39] | gamma | 33-500 kGy/14.5 Mrad | Crystallinity %-126.5% Crosslink density-<747% | Wear rate->6% | Impact of strength-50% Hardness-100% Tensile strength-87% Elongation at break (%)-61% |
Ref. | Reinforced Particle | Concentration/Size | Crystallinity | Tribological Results | Mechanical Results |
---|---|---|---|---|---|
[140] | Polyimide | 10–90 wt.% Optimum-50% wt.% | Increase in crystallinity and stability | COF-65–75% Wear rate-15% | ----- |
[127] | Nano-diamond | 0.5, 1 & 2 wt.% 30–40 nm Optimum-1 wt.% | 97.8% | COF-76% Wear rate-28% | Yield Stress-No change Micro Hardness-97.6% |
[126] | Carbon Nanotubes | 0.1, 0.45 & 0.5 wt.%, Optimum-0.1 wt.% | 3% decrease in melting peak. | Wear rate-118% | Micro Hardness-100.2% |
[139] | Zeolite | 10 wt.% 20 wt.% Optimum-10 wt.% | ----- | COF-approx. 80–90% Volume loss-approx. 80–85% | Tensile Strength-89% Impact Strength-125% Modulus-131% Elongation-89.2% |
[126] | Nacre coated with PFPE | 12 wt.% | 12% reduction in melting peak | Wear rate-251% | Micro Hardness-114% |
[132] | Carbon Fibers | Variations in no. of layers Optimum-CF/UF/CF-2/12/2 | Flexural Strength-509% Flexural Modulus-284% Ballistic Limit-91% | ||
[141] | Nanoclay | 0.5, 1.5 & 3 wt.% Optimum-1.5 wt.% | Wear Life- greater than 10,000 cycles | Hardness-134% | |
[138] | Multi-walled carbon nanotubes | 0.1, 0.5 & 1 wt.% Optimum-1 wt.% | COF-approx. same Wear Rate-74% | Hardness-105% | |
[142] | Polyethylene glycol (PEG) | Best UHMWPE/PEG ratio 60/4 | Shear viscosity-33.3% Storage Modulus-25.5% Loss of modulus-68% | Flexural strength-79.8% Flexural Modulus-77.5% | |
[135] | Graphene nanoplatelets (GNP) | 0.1 wt.% to 10 wt.% Optimum-0.5 wt.% | Crystallinity %-103% | Elastic modulus-130% Yield strength-113% Tensile strength-75% Toughness-76% | |
[143] | Aramid | 2, 3 & 5 wt.% | Roughness-172% Specific wear-60% COF-107% | Hardness-700% | |
[143] | Poly-tetra-fluoro-ethylene | 2, 3 & 5 wt.% Average | Roughness-159% Specific wear-83% COF-91% | Hardness-500% | |
[124] | High density polyethylene (HDPE) | 20, 40, 50, 60, 80 wt.% Optimum- 50 wt.% | Tensile yield stress. 86.3% Tensile strength-69.5% Strain at the break. 380% | ||
[144] | SiO2 nano-spheres | 0.5, 1, 2, 4 wt.% Optimum-1 wt.% | Degree of crystallization %-96% | COF-50% Volume wear rate-29.4% Mass wear rate-90% | |
[145] | Fe-Al2O3/vinyl acetate (EVA) | 18 wt.% of EVA, <50 nm size of Al2O3 1, 3 & 5 wt.% of Fe-Al2O3 Optimum-1 wt.% of Fe-Al2O3 | Tensile Strength-200.7% Modulus of Elasticity-139.3% | ||
[146] | Alendronate sodium (ALN) | 1.0 wt.% | COF-approx. 90% Specific wear rate- approx. 110% | Young’s Modulus-97.5% Micro-hardness-96.8% Tensile strength-84.4% | |
[147] | Nano ZnO | 5–20 wt.% Optimum-10 wt.% Size-<100 nm | Wight loss (mg)-58.5% COF-100% | ||
[148] | Carbon Fibers (CF) | 5–30 wt.% Optimum-20 wt.% | COF-139% & 220% Wear Volume-20% & 35% | Hardness-140% | |
[149] | Hydroxyapatite (HA) | 4.7–22. wt.% Optimum-22.8 wt.% | Modulus-888% Yield strength-104% Elongation at break-74% | ||
[150] | kaolin | Size-10 µm 11–26.5 wt.% Optimu-20 wt.% | COF-87% Wear rate-56% | ||
[105] | Graphene | 0.5–3 wt.% Optimum-0.7 wt.% | Degree of crystallization (%)-101% | Linear weight loss temperature-102 % Micro-hardness-110% Toughness-55% | |
[151] | Talc | 10 & 20 wt.% Optimum-20 wt.% | Degree of crystallization (%)-108% | COF-55% Wear rate-50% |
Ref. | Coating materials | Thickness | Tribological Results | Mechanical Results |
---|---|---|---|---|
[162] | Polypyrrole/Carbon nanotubes | Nominal compressive transverse modulus-500% Bending Modulus-147% Bending rigidity-515% | ||
[163] | Hydrogenated diamond-like carbon (HDLC) | 250 nm and 700 nm | COF-200% Wear rate-85% | Nano-hardness-200% |
[161] | TiAlV | 4.59 µm | Wear rate-118% | Surface hardness-35% at lower load while 200% at higher load |
[164] | Nylon 6, 12 | 0.53 mm | Static load resistance-186% Energy absorption-145 to 316% | |
[165] | Poly(methyl methacrylate)—hydroxyapatite (PMMA/HA) | 32.61–34.01 µm | COF-75% Wear rate-65% |
Ref. | Texturing Method | Shape | Area Density | Tribological Results |
---|---|---|---|---|
[178] | Photolithography and electrolytic etching | Round dimple | 5–40% Optimum-30% | COF-76% Wear depth-64% |
[182] | Nanoimprint lithography (NIL) | Rectangular grading array | Area density-50% | Static friction-43–55% COF-60–90% |
[181] | Numerical | Circular, Rectangular, squared &Triangular | Circular-26%, Rectangular-17% squared-20%, Trianglular-21% | COF for Circular-89.1%, Rectangular-71.9% squared-71.4%, Trianglular-74.6% |
[183] | Laser surface | Squared Rectangular | Squared-51% Rectangular-43.4% | COF-45% Wear track depth-71% |
[179] | Micromachining | Dimple | 3.1, 12.6, 50.2% Optimum-12.6% | COF-50% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M.; Naqvi, R.A.; Abbas, N.; Khan, S.M.; Nawaz, S.; Hussain, A.; Zahra, N.; Khalid, M.W. Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a Promising Polymer Material for Biomedical Applications: A Concise Review. Polymers 2020, 12, 323. https://doi.org/10.3390/polym12020323
Hussain M, Naqvi RA, Abbas N, Khan SM, Nawaz S, Hussain A, Zahra N, Khalid MW. Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a Promising Polymer Material for Biomedical Applications: A Concise Review. Polymers. 2020; 12(2):323. https://doi.org/10.3390/polym12020323
Chicago/Turabian StyleHussain, Muzamil, Rizwan Ali Naqvi, Naseem Abbas, Shahzad Masood Khan, Saad Nawaz, Arif Hussain, Nida Zahra, and Muhammad Waqas Khalid. 2020. "Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a Promising Polymer Material for Biomedical Applications: A Concise Review" Polymers 12, no. 2: 323. https://doi.org/10.3390/polym12020323
APA StyleHussain, M., Naqvi, R. A., Abbas, N., Khan, S. M., Nawaz, S., Hussain, A., Zahra, N., & Khalid, M. W. (2020). Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a Promising Polymer Material for Biomedical Applications: A Concise Review. Polymers, 12(2), 323. https://doi.org/10.3390/polym12020323