Improved Desulfurization Performance of Polyethyleneglycol Membrane by Incorporating Metal Organic Framework CuBTC
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Membrane Preparation
2.2.1. Synthesis of CuBTC Particles
2.2.2. Preparation of CuBTC-filled PEG MMMs
2.3. Characterization of CuBTC and Membranes
2.4. Pervaporation Experiments
3. Results and Discussions
3.1. Characterization of CuBTC Particles
3.2. Characterization of CuBTC/PEG Hybrid Membranes
3.2.1. FT-IR Spectra of CuBTC/PEG Hybrid Membranes
3.2.2. SEM Photographs of CuBTC-Filled PEG MMMs
3.2.3. XRD Patterns of CuBTC-Filled PEG MMMs
3.3. Pervaporation Performances of CuBTC-Filled PEG MMMs
3.3.1. Effect of CuBTC Particle Content
3.3.2. Effect of Feed Temperature
3.3.3. Effect of Feed Sulfur Content
3.3.4. The Long-Term Stability of the Membranes
3.3.5. Comparison of Pervaporation Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stanislaus, A.; Marafi, A.; Rana, M.S. Recent advances in the science and technology of ultralow sulfur diesel (ULSD) production. Catal. Today 2010, 153, 1–68. [Google Scholar] [CrossRef]
- Li, W.L.; Liu, Q.F.; Xing, J.M.; Gao, H.S.; Xiong, X.C.; Li, Y.G.; Li, X.; Liu, H.Z. High-efficiency desulfurization by adsorption with mesoporous aluminosilicates. AIChE J. 2007, 49, 3263–3268. [Google Scholar] [CrossRef]
- Hao, L.W.; Su, T.; Hao, D.M.; Deng, C.L.; Ren, W.Z.; Lü, H.Y. Oxidative desulfurization of diesel fuel with caprolactam-based acidic deep eutectic solvents: Tailoring the reactivity of DESs by adjusting the composition. Chinese. J. Catal. 2018, 39, 1552–1559. [Google Scholar] [CrossRef]
- Ha, Y.; Guo, B.S.; Li, Y.H. Sensitivity and economic analysis of a catalytic distillation process for alkylation desulfurization of fluid catalytic cracking (FCC) gasoline. J. Chem. Technol. Biot. 2016, 91, 490–506. [Google Scholar] [CrossRef]
- Chang, J.H.; Kim, Y.J.; Lee, B.H.; Cho, K.S.; Ryu, H.W.; Chang, Y.K.; Chang, H.N. Production of a desulfurization biocatalyst by two-stage fermentation and its application for the treatment of model and diesel oils. Biotechnol. Prog. 2001, 17, 876–880. [Google Scholar] [CrossRef]
- Han, X.L.; Hu, T.T.; Wang, Y.; Chen, H.Y.; Wang, Y.Q.; Yao, R.Q.; Ma, X.X.; Li, J.D.; Li, X.F. A water-based mixing process for fabricating ZIF-8/PEG mixed matrix membranes with efficient desulfurization performance. Sep. Purif. Technol. 2019, 214, 61–66. [Google Scholar] [CrossRef]
- Şen, F.; Kahraman, M.V. Preparation and characterization of hybrid cationic hydroxyethyl cellulose/sodium alginate polyelectrolyte antimicrobial films. Polym. Adv. Technol. 2018, 29, 1895–1901. [Google Scholar] [CrossRef]
- Seo, K.; Sinha, K.; Novitskaya, E.; Graeve, O.A. Polyvinylpyrrolidone (PVP) effects on iron oxide nanoparticle formation. Mater. Lett. 2018, 215, 203–206. [Google Scholar] [CrossRef]
- Wang, H.N.; Wang, F.; Li, X.Q.; Peng, X.P.; Ci, Z.P.; Wang, Z.F. Preparation and performance investigation of polydimethylsiloxane microsphere/polyvinyl alcohol composite hydrogel. Mater. Lett. 2018, 228, 399–402. [Google Scholar] [CrossRef]
- Gao, J.J.; Zhu, S.; Dai, Y.F.; Xiong, C.Y.; Li, C.X.; Yang, W.M.; Jiang, X.M. Performance and mechanism for extractive desulfurization of fuel oil using modified polyethylene glycol. Fuel 2018, 233, 704–713. [Google Scholar] [CrossRef]
- Yuan, S.M.; Ma, C.C.; Chang, C.L.; Lin, Y.Y.; Teng, C.C. Preparation and morphological, electrical, and mechanical properties of polyimide-grafted MWCNT/polyimide composite. J. Polym. Sci. 2017, 45, 3349–3358. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, Y.; Li, H. Pervaporation and sorption behavior of zeolite-filled polyethylene glycol hybrid membranes for the removal of thiophene species. J. Colloid. Interf. Sci. 2010, 350, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Z.; Zhang, Y.M.; Li, J.D.; Chen, J. Preparation and characterization of PEG/PVDF composite membranes and effects of solvents on its pervaporation performance in heptane desulfurization. Desalin. Water Treat. 2012, 46, 1–11. [Google Scholar] [CrossRef]
- Yang, Z.J.; Zhang, W.; Wang, T.; Li, J.D. Improved thiophene solution selectivity by Cu2+, Pb2+ and Mn2+ ions in pervaporative poly[bis(p-methyl phenyl) phosphazene]desulfurization membrane. J. Membr. Sci. 2014, 454, 463–469. [Google Scholar] [CrossRef]
- Yu, S.N.; Jiang, Z.Y.; Li, W.D.; Mayta, J.Q.; Ding, H.; Song, Y.M.; Li, Z.; Dong, Z.W.; Pan, F.S.; Wang, B.Y.; et al. Elevated performance of hybrid membranes by incorporating metal organic framework CuBTC for pervaporative desulfurization of gasoline. Chem. Eng. Process. 2018, 123, 12–19. [Google Scholar] [CrossRef]
- Yu, S.N.; Jiang, Z.Y.; Ding, H.; Pan, F.S.; Wang, B.Y.; Yang, J.; Cao, X.Z. Elevated pervaporation performance of polysiloxane membrane using channels and active sites of metal organic framework CuBTC. J. Membr. Sci. 2015, 481, 73–81. [Google Scholar] [CrossRef]
- Hu, W.L.; Han, X.L.; Liu, L.L.; Zhang, X.; Xue, J.Q.; Wang, B.Y.; Zhang, P.; Cao, X.Z. PEG/PVDF Membranes for Separating Organosulphur Compounds from N-Heptane: Effect of PEG Molecular Weight. Can. J. Chem. Eng. 2016, 9999, 1–8. [Google Scholar]
- Schlichte, K.; Kratzke, T.; Kaskel, S. Improved synthesis, thermal stability and catalytic properties of the metal–organic framework compound Cu3(BTC)2. Micropor. Mesopor. Mat. 2004, 73, 81–88. [Google Scholar] [CrossRef]
- Al-Janabi, N.; Hill, P.; Torrente-Murciano, L.; Garforth, A.; Gorgojo, P.; Siperstein, F.; Fan, X.L. Mapping the Cu-BTC metal–organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases. Chem. Eng. J. 2015, 281, 669–677. [Google Scholar] [CrossRef] [Green Version]
- Ameloot, R.; Gobechiya, E.; Uji-i, H.; Martens, J.A.; Hofkens, J.; Alaerts, L.; Sels, B.F.; De Vos, D.E. Direct patterning of oriented metal–organic framework crystals via control over crystallization kinetics in clear precursor solutions. Adv. Mater. 2010, 22, 2685–2688. [Google Scholar] [CrossRef]
- Silvestre, M.E.; Franzreb, M.; Weidler, P.G.; Shekhah, O.; Wöll, C. Magnetic cores with porous coatings: Growth of metal-organic frameworks on particles using liquid phase epitaxy. Adv. Funct. Mater. 2013, 23, 1210–1213. [Google Scholar] [CrossRef]
- Ma, X.; Peng, S.P.; Li, W.M.; Liu, H.D.; Chen, Y.F. Efficient removal of low concentration methyl mercaptan by HKUST-1 membrane constructed on porous alumina granules. CrysEngComm 2018, 20, 407–411. [Google Scholar] [CrossRef]
- Finocchio, E.; Cristiani, C.; Dotelli, G.; Stampino, P.G.; Zampori, L. Thermal evolution of PEG-based and BRIJ-based hybridorgano-inorganic materials. FT-IR studies. Vib. Spectrosc. 2014, 71, 47–56. [Google Scholar] [CrossRef]
- Zeng, Y.P.; Zhu, X.M.; Yuan, Y.; Zhang, X.B.; Ju, S.G. Molecular simulations for adsorption and separation of thiophene and benzene in Cu-BTC and IRMOF-1 metal-organic frameworks. Sep. Purif. Technol. 2012, 95, 149–156. [Google Scholar] [CrossRef]
- Wei, X.L.; Cheng, X.J.; Xie, C.G. Initiation of chain reaction in catalytic pyrolysis of n-Heptane over zeolite catalysts. Acta Petrolei Sinica. 2013, 29, 13–20. [Google Scholar]
- Han, X.L.; Sun, H.X.; Liu, L.L.; Wang, Y.Q.; He, G.H.; Li, J.D. Improved desulfurization performance of polydimethylsioxane membrane by incorporating metal organic framework CPO-27-Ni. Sep. Purif. Technol. 2019, 217, 86–94. [Google Scholar] [CrossRef]
- Kong, Y.; Lin, L.G.; Zhang, Y.Z.; Lu, F.W.; Xie, K.K.; Liu, R.K.; Guo, L.; Shao, S.; Yang, J.R.; Shi, D.Q. Studies on polyethylene glycol/polyethersulfone composite membranes for FCC gasoline desulphurization by pervaporation. Eur. Polym. J. 2008, 44, 3335–3343. [Google Scholar] [CrossRef]
- Lin, L.; Kong, Y.; Xie, K.; Lu, F.; Liu, R.; Guo, L.; Shao, S.; Yang, J.; Shi, D.; Zhang, Y. Polyethylene glycol/polyurethane blend membranes for gasoline desulphurization by pervaporation technique. Sep. Purif. Technol. 2008, 61, 293–300. [Google Scholar] [CrossRef]
Membrane | Feed | C (μg/g) | T (°C) | Flux (kg/(m2·h) | Enrichment Factor | Reference |
---|---|---|---|---|---|---|
PEG-PES | FCC gasoline | 900 | 100 | 3.37 | 3.63 | [27] |
PEG-PU | FCC gasoline | 1200 | 110 | 2.5 | 4.03 | [28] |
PEG-CuY | FCC gasoline | 1190 | 110 | 3.19 | 2.95 | [12] |
CuBTC-PeBAX | Thiophene/octane | 1300 | 70 | 16.45 | 4.04 | [15] |
CuBTC-PDMS | Thiophene/n-octane | 1300 | 40 | 5.24 | 5.20 | [16] |
CPO-27-Ni--PDMS | Thiophene/n-heptane | 200 | 45 | 5.92 | 4.05 | [26] |
ZIF-8-PEG | Thiophene/n-heptane | 200 | 75 | 1.96 | 8.93 | [6] |
CuBTC-PEG | Thiophene/n-heptane | 200 | 75 | 2.206 | 8.37 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, C.; Fan, X.; Han, X.; Li, J.; Vardhan, H. Improved Desulfurization Performance of Polyethyleneglycol Membrane by Incorporating Metal Organic Framework CuBTC. Polymers 2020, 12, 414. https://doi.org/10.3390/polym12020414
Cai C, Fan X, Han X, Li J, Vardhan H. Improved Desulfurization Performance of Polyethyleneglycol Membrane by Incorporating Metal Organic Framework CuBTC. Polymers. 2020; 12(2):414. https://doi.org/10.3390/polym12020414
Chicago/Turabian StyleCai, Caibin, Xiaotao Fan, Xiaolong Han, Jiding Li, and Harsh Vardhan. 2020. "Improved Desulfurization Performance of Polyethyleneglycol Membrane by Incorporating Metal Organic Framework CuBTC" Polymers 12, no. 2: 414. https://doi.org/10.3390/polym12020414
APA StyleCai, C., Fan, X., Han, X., Li, J., & Vardhan, H. (2020). Improved Desulfurization Performance of Polyethyleneglycol Membrane by Incorporating Metal Organic Framework CuBTC. Polymers, 12(2), 414. https://doi.org/10.3390/polym12020414