The Performance Changes and Migration Behavior of PLA/Nano-TiO2 Composite Film by High-Pressure Treatment in Ethanol Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and High Pressure Treatment of PLA-Based Composite Films
2.3. Migration Test
2.4. Measurement of Distribution Coefficient and Diffusion Coefficient
2.5. Conditional Assumptions
2.6. Migration Model
2.7. Scanning Electron Microscopy (SEM)
2.8. X-Ray Diffraction (XRD)
2.9. Differential Scanning Calorimetry (DSC)
2.10. Water Vapor Permeability (WVP)
2.11. Oxygen Transmission Rate (OTR)
3. Results and Discussion
3.1. Migration Amount of Nano-TiO2
3.2. Mathematical Model of Migration
3.3. Microstructure
3.4. Crystalline Structural Changes
3.5. Thermal Performance
3.6. Barrier Performances
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siracusa, V.; Rocculi, P.; Romani, S.; Rosa, M.D. Biodegradable polymers for food packaging: A review. Trends Food Sci. Tech. 2008, 19, 634–643. [Google Scholar] [CrossRef]
- Tumwesigye, K.S.; Oliveira, J.C.; Sousa-Gallagher, M.J. New sustainable approach to reduce cassava borne environmental waste and develop biodegradable materials for food packaging applications. Food Packaging Shelf. 2016, 7, 8–19. [Google Scholar] [CrossRef]
- Wang, H.; Wei, D.; Zheng, A.; Xiao, H. Soil burial biodegradation of antimicrobial biodegradable PBAT films. Polym. Degrad. Stabil. 2015, 116, 14–22. [Google Scholar] [CrossRef]
- Ren, Y.; Babaie, E.; Bhaduri, S. Nanostructured amorphous magnesium phosphate/poly (lactic acid) composite coating for enhanced corrosion resistance and bioactivity of biodegradable AZ31 magnesium alloy. Prog. Org. Coat. 2018, 118, 1–8. [Google Scholar] [CrossRef]
- Bergel, B.F.; Luz, L.M.D.; Santana, R.M.C. Effect of poly(lactic acid) coating on mechanical and physical properties of thermoplastic starch foams from potato starch. Prog. Org. Coat. 2018, 118, 91–96. [Google Scholar] [CrossRef]
- Meriçer, Ç.; Minelli, M.; Angelis, M.G.D.; Giacinti Baschetti, M.; Stancampiano, A.; Laurita, R.; Gherardi, M.; Colombo, V.; Trifol, J.; Szabo, P.; et al. Atmospheric plasma assisted PLA/microfibrillated cellulose (MFC) multilayer biocomposite for sustainable barrier application. Ind. Crops Prod. 2016, 93, 235–243. [Google Scholar] [CrossRef]
- Fei, Y.; Wang, H.; Gao, W.; Wan, Y.; Fu, J.; Yang, R. Antimicrobial activity and mechanism of PLA/TP composite nanofibrous films. J. Text. I. 2014, 105, 196–202. [Google Scholar] [CrossRef]
- Ahmed, J.; Varshney, S.K.; Auras, R. Thermal and Rheological Properties of L-Polylactide/Polyethylene Glycol/Silicate Nanocomposites Films. J. Food Sci. 2010, 75, N97–N108. [Google Scholar] [CrossRef]
- Lei, S.; Zhao, Y.; Zhang, X.; Su, H.; Tan, T. Antibacterial and anti-mildew behavior of chitosan/nano-TiO2 composite emulsion. Korean J. Chem. Eng. 2008, 25, 1434–1438. [Google Scholar] [CrossRef]
- Venkatachalam, N.; Palanichamy, M.; Murugesan, V. Sol–gel preparation and characterization of nanosize TiO2: Its photocatalytic performance. Mater. Chem. Phys. 2007, 104, 454–459. [Google Scholar] [CrossRef]
- Mofokeng, J.P.; Luyt, A.S. Morphology and thermal degradation studies of melt-mixed PLA/PHBV biodegradable polymer blend nanocomposites with TiO2 as filler. J Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Russa, M.F.L.; Rovella, N.; Buergo, M.A.D.; Belfiore, C.M.; Pezzino, A.; Crisci, G.M.; Ruffolo, S.A. Nano-TiO2 coatings for cultural heritage protection: The role of the binder on hydrophobic and self-cleaning efficacy. Prog. Org. Coat. 2016, 91, 1–8. [Google Scholar] [CrossRef]
- Bodaghi, H.; Mostofi, Y.; Oromiehie, A.; Zamani, Z.; Ghanbarzadeh, B.; Costa, C.; Conte, A.; Science, M.A.D.N. Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests. LWT-Food Sci. Technol. 2013, 50, 702–706. [Google Scholar] [CrossRef]
- Lian, Z.; Zhang, Y.; Zhao, Y. Nano-TiO2 particles and high hydrostatic pressure treatment for improving functionality of polyvinyl alcohol and chitosan composite films and nano-TiO2 migration from film matrix in food simulants. Innov. Food. Sci. Emerg. 2016, 33, 145–153. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, G.; Wang, Y.; Zhao, Y.; Su, H.; Tan, T. Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohyd. Polym. 2017, 169, 101–107. [Google Scholar] [CrossRef]
- Thamaphat, K.; Limsuwan, P.; Ngotawornchai, B. Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J.(Nat. Sci.) 2008, 42, 357–361. [Google Scholar]
- Lin, Q.-B.; Li, H.; Zhong, H.-N.; Zhao, Q.; Xiao, D.-H.; Wang, Z.-W. Migration of Ti from nano-TiO2-polyethylene composite packaging into food simulants. Food Addit Contam A. 2014, 31, 1284–1290. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, S.; Xin, B.; Gao, C.; Tian, W.; Bo, Y. Nanosilver Migrated into Food-Simulating Solutions from Commercially Available Food Fresh Containers. Packag. Technol. Sci. 2011, 24, 291–297. [Google Scholar] [CrossRef]
- Fonberg-Broczek, M.; Windyga, B.; Szczawiński, J.; Szczawińska, M.E.; Pietrzak, D.; Prestamo, G. High pressure processing for food safety. Acta biochim. Pol. 2005, 52, 721–724. [Google Scholar] [CrossRef]
- Delgado, F.J.; Delgado, J.; González-Crespo, J.; Cava, R.; Ramírez, R. High-pressure processing of a raw milk cheese improved its food safety maintaining the sensory quality. Food Sci. Technol. Int. 2013, 19, 493–501. [Google Scholar] [CrossRef]
- Lee, W.; Clark, S.; Swanson, B.G. Low Fat Process Cheese Food Containing Ultrahigh Pressure-Treated Whey Protein. J. Food Process. Pres. 2006, 30, 164–179. [Google Scholar] [CrossRef]
- Chi, H.; Li, W.; Fan, C.; Zhang, C.; Li, L.; Qin, Y.; Yuan, M. Effect of High Pressure Treatment on Poly(lactic acid)/Nano–TiO2 Composite Films. Molecules 2018, 23, 2621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simões, C.L.; Viana, J.C.; Cunha, A.M. Mechanical properties of poly(ε-caprolactone) and poly(lactic acid) blends. J. Appl Polym. Sci. 2009, 112, 345–352. [Google Scholar] [CrossRef]
- Astm, E. Standard Test Methods for Water Vapor Transmission of Materials—ASTM E96-95; ASTM: Montgomery County, PA, USA, 2004. [Google Scholar]
- Bott, J.; Störmer, A.; Franz, R. A model study into the migration potential of nanoparticles from plastics nanocomposites for food contact. Food Packaging Shelf. 2014, 2, 73–80. [Google Scholar] [CrossRef]
- Li, W.; Lin, L.; Zhang, H.; Yuan, M.; Qin, Y. Evaluation of PLA nanocomposite films on physicochemical and microbiological properties of refrigerated cottage cheese. J. Food Process. Pres. 2018, 42, e13362. [Google Scholar] [CrossRef]
- Yang, C.; Zhu, B.; Wang, J.; Qin, Y. Structural changes and nano-TiO2 migration of poly(lactic acid)-based food packaging film contacting with ethanol as food simulant. Int. J. Biol. Macromol. 2019, 139, 85–93. [Google Scholar] [CrossRef]
- Pious, C.V.; Thomas, S. Polymeric Materials—Structure, Properties, andApplications. Print. Polym. Fundam. Appl. 2016, 21–39. [Google Scholar]
- Ren, Z.; Dong, L.; Yang, Y. Dynamic mechanical and thermal properties of plasticized poly(lactic acid). J. Appl. Polym. Sci. 2010, 101, 1583–1590. [Google Scholar] [CrossRef]
- Doganay, D.; Coskun, S.; Kaynak, C.; Unalan, H.E. Electrical, mechanical and thermal properties of aligned silver nanowire/polylactide nanocomposite films. Compos. Part B-Eng. 2016, 99, 288–296. [Google Scholar] [CrossRef]
- Cortes, L.Q.; Lonjon, A.; Dantras, E.; Lacabanne, C. High-performance thermoplastic composites poly(ether ketone ketone)/silver nanowires: Morphological, mechanical and electrical properties. J. Non-Cryst. Solids. 2014, 391, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, K.; Tabuani, D.; Dottori, M.; Armentano, I.; Kenny, J.M.; Camino, G. Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites. Polym. Degrad. Stabil. 2011, 96, 2120–2129. [Google Scholar] [CrossRef]
- Pai, A.J.; Sarojini, B.K.; Harshitha, K.R.; Shivarama Holla, B.; Lobo, A.G. Spectral, morphological and optical studies on bischalcone doped polylactic acid (PLA) thin films as luminescent and UV radiation blocking materials. Opt. Mater. 2019, 90, 145–151. [Google Scholar] [CrossRef]
Sample | K | DP (10−16cm2/s) |
---|---|---|
PLA/Ti1 | 5.36 | 2.43 |
PLA/Ti5 | 4.14 | 3.34 |
PLA/Ti10 | 2.64 | 4.17 |
PLA/Ti15 | 2.09 | 4.32 |
PLA/Ti20 | 1.36 | 4.85 |
Sample | Migration Model Equation |
---|---|
PLA/Ti1 | MF,t = 0.241 − 0.196 exp[−(9.59*10−9)t] |
PLA/Ti5 | MF,t = 0.334 − 0.272 exp[−(1.32*10−8)t] |
PLA/Ti10 | MF,t = 0.417 − 0.339 exp[−(1.64*10−8)t] |
PLA/Ti15 | MF,t = 0.441 − 0.359 exp[−(1.71*10−8)t] |
PLA/Ti20 | MF,t = 0.508 − 0.413 exp[−(1.91*10−8)t] |
Sample | Time | Tg (°C) | Tc (°C) | Tm (°C) | Xc (%) |
---|---|---|---|---|---|
PLA | Day 0 | 46.0 | 119.2 | 171.3 | 20.5 |
Day 5 | 59.0 | 128.0 | 170.1 | 18.3 | |
Day 15 | 58.8 | 128.3 | 171.3 | 16.5 | |
Day 30 | 59.9 | 121.5 | 169.4 | 15.2 | |
PLA/Ti5 | Day 0 | 47.6 | 105.4 | 170.0 | 23.8 |
Day 5 | 66.6 | 127.2 | 170.5 | 21.2 | |
Day 15 | 67.0 | 125.5 | 169.0 | 18.3 | |
Day 30 | 65.5 | 123.0 | 171.2 | 16.8 | |
PLA/Ti10 | Day 0 | 46.4 | 106.6 | 171.4 | 26.7 |
Day 5 | 60.2 | 124.2 | 170.2 | 24.5 | |
Day 15 | 61.5 | 115.0 | 171.5 | 22.9 | |
Day 30 | 60.8 | 119.3 | 170.9 | 21.2 | |
PLA/Ti20 | Day 0 | 48.8 | 108.6 | 170.0 | 25.4 |
Day 5 | 61.7 | 127.7 | 169.4 | 23.1 | |
Day 15 | 62.9 | 121.0 | 170.0 | 21.4 | |
Day 30 | 62.5 | 119.0 | 170.5 | 19.4 |
Time (Day) | |||||
---|---|---|---|---|---|
Sample | 0 | 5 | 15 | 30 | |
WVP | PLA | 4.81 ± 0.17a | 5.13 ± 0.11a | 5.34 ± 0.22a | 5.55 ± 0.15a |
(g·m)/(m2·s·Pa) | PLA/Ti5 | 3.46 ± 0.32b | 4.26 ± 0.22b | 4.58 ± 0.14b | 4.81 ± 0.25b |
PLA/Ti10 | 4.12 ± 0.15ab | 4.83 ± 0.18ab | 5.05 ± 0.18ab | 5.49 ± 0.09a | |
PLA/Ti20 | 4.97 ± 0.18a | 5.24 ± 0.09a | 5.45 ± 0.09a | 5.61 ± 0.13a | |
OTR | PLA | 4.02 ± 0.18a | 4.35 ± 0.14a | 4.54 ± 0.21a | 4.77 ± 0.15ab |
[(cm3/(24h*m2)]*(cm/bar) | PLA/Ti5 | 2.92 ± 0.13b | 3.32 ± 0.12b | 3.61 ± 0.11b | 3.99 ± 0.13c |
PLA/Ti10 | 3.28 ± 0.09b | 3.58 ± 0.17b | 3.84 ± 0.17b | 4.21 ± 0.12bc | |
PLA/Ti20 | 3.98 ± 0.21a | 4.24 ± 0.12a | 4.52 ± 0.15a | 4.81 ± 0.20a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Fan, F.; Fan, C.; Jiang, K.; Qin, Y. The Performance Changes and Migration Behavior of PLA/Nano-TiO2 Composite Film by High-Pressure Treatment in Ethanol Solution. Polymers 2020, 12, 471. https://doi.org/10.3390/polym12020471
Tang Z, Fan F, Fan C, Jiang K, Qin Y. The Performance Changes and Migration Behavior of PLA/Nano-TiO2 Composite Film by High-Pressure Treatment in Ethanol Solution. Polymers. 2020; 12(2):471. https://doi.org/10.3390/polym12020471
Chicago/Turabian StyleTang, Zhenya, Fangling Fan, Chunli Fan, Kai Jiang, and Yuyue Qin. 2020. "The Performance Changes and Migration Behavior of PLA/Nano-TiO2 Composite Film by High-Pressure Treatment in Ethanol Solution" Polymers 12, no. 2: 471. https://doi.org/10.3390/polym12020471
APA StyleTang, Z., Fan, F., Fan, C., Jiang, K., & Qin, Y. (2020). The Performance Changes and Migration Behavior of PLA/Nano-TiO2 Composite Film by High-Pressure Treatment in Ethanol Solution. Polymers, 12(2), 471. https://doi.org/10.3390/polym12020471