Simulation and Experimental Investigation on Carbonized Tracking Failure of EPDM/BN-Based Electrical Insulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanocomposites Fabrication
2.2. Electrical Tracking Test
2.3. Tracking Life and Leakage Current
2.4. Thermal Distribution Studies
2.5. Thermal Stability and Thermal Conductivity
3. Results and Discussion
3.1. Electric Field Simulation
3.2. Carbon Tracking
3.3. Thermal Distribution
3.4. Leakage Current
3.5. Influence of Thermal Conductivity and Thermal Stability
3.6. Influence of Interparticle Distance and Surface Area of Nano-BN
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xidong, L.; Shaowu, W.; Ju, F. The development and study of composite insulators in China. IEEE Trans. Dielectr. Electr. Insul. 1999, 6, 586–594. [Google Scholar]
- Ali, M.; Hackam, R. Effects of saline water and temperature on surface properties of HTV silicone rubber. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1368–1378. [Google Scholar] [CrossRef]
- Ohki, Y.; Hirai, N. Fault location in a cable for a nuclear power plant by frequency domain reflectometry. In Proceedings of the 2016 International Conference on Condition Monitoring and Diagnosis (CMD), Xi’an, China, 25–28 September 2016; pp. 36–39. [Google Scholar]
- Nazir, M.T.; Phung, B.T.; Li, S.; Yu, S. Resistance against AC corona discharge of micro-ATH/ nano-Al2O3 co-filled silicone rubber composites. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 657–667. [Google Scholar] [CrossRef]
- Kim, S.H.; Cherney, E.A.; Hackam, R.; Rutherford, K.G. Chemical changes at the surface of RTV silicone rubber coatings on insulators during dry-band arcing. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 106–123. [Google Scholar]
- Gorur, R.S.; Cherney, E.A.; Hackam, R.; Orbeck, T. The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber. IEEE Trans. Power Deliv. 1988, 31, 157–1164. [Google Scholar] [CrossRef]
- Gomez, A.D.; Mathersa, A.R.; Vasudev, N. Experimental and simulation studies on room temperature vulcanization (RTV) silicone material under inclined plane tracking and erosion test. In Proceedings of the 2017 3rd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Rupnagar, India, 16–18 Novemebr 2017; pp. 302–305. [Google Scholar]
- Venkatesulu, B.; Thomas, M.J. Erosion resistance of alumina filled silicone rubber nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 615–624. [Google Scholar] [CrossRef]
- Meyer, L.; Jayaram, S.; Cherney, E.A. Thermal conductivity of filled silicone rubber and its relationship to erosion resistance in the inclined plane test. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 620–630. [Google Scholar] [CrossRef]
- Kumagai, S.; Yoshimura, N. Tracking and erosion of HTV silicone rubbers of different thickness. IEEE Trans. Dielectr. Electr. Insul. 2001, 8, 673–678. [Google Scholar] [CrossRef]
- Kaaiye, S.F.; Nyamupangedengu, C. Comparative study of AC and DC inclined plane tests on silicone rubber (SiR) insulation. High Volt. 2017, 2, 119–128. [Google Scholar] [CrossRef]
- El-Hag, A.H.; Simon, L.C.; Jayaram, S.H.; Cherney, E.A. Erosion resistance of nano-filled silicone rubber. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 122–128. [Google Scholar] [CrossRef]
- Ramirez, I.; Jarayam, S.; Cherney, E.A. Performance of silicone rubber nanocomposites in salt-fog, inclined plane, and laser ablation tests. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 206–213. [Google Scholar] [CrossRef]
- Lee, C.H.; Kim, S.W.; Nam, J.H.; Oh, W.J.; Yoon, H.K.; Suh, K.S. Effects of particle size of alumina trihydrate on electrical properties of EPDM. In Proceedings of the 1998 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Cat. No.98CH36257), Atlanta, GA, USA, 25–28 October 1998; pp. 112–115. [Google Scholar]
- Kurata, Y.; Takano, K.; Sakuraba, K.; Hayashi, M. Evaluation of EPDM rubber for high voltage insulator. In Proceedings of the 1995 Conference on Electrical Insulation and Dielectric Phenomena, Virginia Beach, VA, USA, 22–25 October 1995; pp. 471–474. [Google Scholar]
- Lee, C.H.; Kim, S.W. Effects of compounding ingredients on surface tracking of EPDM. In Proceedings of the 1998 International Symposium on Electrical Insulating Materials, Toyohashi, Japan, 30–30 September 1998; pp. 297–300. [Google Scholar]
- Ramirez, I.; Cherney, E.A.; Jarayam, S. Comparison of the erosion resistance of silicone rubber and EPDM composites filled with micro silica and ATH. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 218–224. [Google Scholar] [CrossRef]
- Prabu, R.R.; Majeed, S.S.A.; Usa, S.; Thyagarajan, T. Tracking resistance behaviour of the blends of silicone and EPDM polymeric insulators. In Proceedings of the 2001 International Symposium on Electrical Insulating Materials (ISEIM 2001), Himeji, Japan, 22–22 November 2001; pp. 309–312. [Google Scholar]
- Rajini, V.; Deepalaxmi, R. Property modification of SiR-EPDM blends by electron beam irradiation. In Proceedings of the 2012 IEEE International Conference on Condition Monitoring and Diagnosis, Bali, Indonesia, 23–27 September 2012; pp. 1071–1076. [Google Scholar]
- Fairus, M.; Hafiz, M.; Mansor, N.S.; Kamarol, M.; Jaafar, M. Comparative study of SiR/EPDM containing nano-alumina and titanium dioxides in electrical surface tracking. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2901–2910. [Google Scholar] [CrossRef]
- Ghunem, R.A.; Jayaram, S.H.; Cherney, E.A. Comparative inclined plane tests on silicone and EPDM elastomers under DC. In Proceedings of the 2013 IEEE Electrical Insulation Conference (EIC), Ottawa, ON, Canada, 2–5 June 2013; pp. 356–359. [Google Scholar]
- Meyer, L.H.; Jayaram, S.H.; Cherney, E.A. Correlation of damage, dry band arcing energy, and temperature in inclined plane testing of silicone rubber for outdoor insulation. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 424–432. [Google Scholar] [CrossRef]
- Du, B.X.; Xu, H. Effects of thermal conductivity on dc resistance to erosion of silicone rubber/BN nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 511–518. [Google Scholar] [CrossRef]
- Nazir, M.T.; Phung, B.T.; Yu, S.; Li, S. Effects of thermal properties on tracking and erosion resistance of micro- ATH/AlN/BN filled silicone rubber composites. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 2076–2085. [Google Scholar] [CrossRef]
- An, D.; Cheng, S.; Zhang, Z.; Jiang, C.; Fang, H.; Li, J.; Liu, Y.; Wong, C.P. A polymer-based thermal management material with enhanced thermal conductivity by introducing three-dimensional networks and covalent bond connections. Carbon 2019, 155, 258–267. [Google Scholar] [CrossRef]
- IEC 60587. Electrical Insulating Materials Used Under Severe Ambient Conditions—Test Methods for Evaluating Resistance to Tracking and Erosion; IEC: London, UK, 2007. [Google Scholar]
- Nazir, M.T.; Phung, B.T.; Kabir, I.; Yuen, A.C.Y.; Yeoh, G.H.; Zhang, Y.; Yu, S.; Li, S. Investigation on dry band arcing induced tracking failure on nanocomposites of EPDM matrix. In Proceedings of the 2019 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE), Guangzhou, China, 7–10 April 2019; pp. 309–312. [Google Scholar]
- Muhamedin, F.L.; Piah, M.A.M.; Othman, N.A. Modelling on tracking test condition of polymer nanocomposite using finite element simulation. Telkomnika 2015, 13, 1194–1203. [Google Scholar] [CrossRef] [Green Version]
- Du, B.X.; Xiao, M.; Zhang, J.W. Effect of thermal conductivity on tracking failure of Epoxy/BN composite under pulse strength. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 296–302. [Google Scholar] [CrossRef]
- Xiao, M.; Du, B.X. Review of high thermal conductivity polymer dielectrics for electrical insulation. High Volt. 2016, 1, 34–42. [Google Scholar] [CrossRef]
- Nazir, M.T.; Phung, B.T.; Li, S. Erosion resistance of micro-AlN and nano-SiO2 hybrid filled silicone rubber composites. In Proceedings of the 2017 International Symposium on Electrical Insulating Materials (ISEIM), Toyohashi, Japan, 11–15 September 2017; pp. 370–373. [Google Scholar]
- Zhou, W.; Qi, S.; Tu, C.; Zhao, H. Novel heat-conductive composite silicone rubber. J. Appl. Polym. Sci. 2007, 104, 2478–2483. [Google Scholar] [CrossRef]
- Tanaka, T.; Kozako, M.; Fuse, N.; Ohki, Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 669–681. [Google Scholar] [CrossRef]
- Nazir, M.T.; Phung, B.T.; Hoffman, M. Effect of AC corona discharge on hydrophobic properties of silicone rubber nanocomposites. In Proceedings of the 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Sydney, NSW, Australia, 19–22 July 2015; pp. 412–415. [Google Scholar]
- Nazir, M.T.; Phung, B.T. AC corona resistance performance of silicone rubber composites with micro/nano silica fillers. In Proceedings of the 2016 IEEE International Conference on Dielectrics (ICD), Montpellier, France, 3–7 July 2016; pp. 681–684. [Google Scholar]
Material | Relative Permittivity | Conductivity (S/m) |
---|---|---|
EPDM | 2.43 | 2.02 × 10−11 |
Steel | 1 | 11 × 105 |
Contamination | 81 [28] | 0.020 |
Sample | % Weight Loss Temperature Points | % Residual Weight at 700 °C | ||
---|---|---|---|---|
T10% | T25% | T50% | ||
0 wt % | 387 | 412 | 442 | 0.00232 |
5 wt % | 438 | 451 | 462 | 5.6 |
7 wt % | 436 | 450 | 464 | 9.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazir, M.T.; Butt, F.T.; Phung, B.T.; Yeoh, G.H.; Yasin, G.; Akram, S.; Bhutta, M.S.; Hussain, S.; Nguyen, T.A. Simulation and Experimental Investigation on Carbonized Tracking Failure of EPDM/BN-Based Electrical Insulation. Polymers 2020, 12, 582. https://doi.org/10.3390/polym12030582
Nazir MT, Butt FT, Phung BT, Yeoh GH, Yasin G, Akram S, Bhutta MS, Hussain S, Nguyen TA. Simulation and Experimental Investigation on Carbonized Tracking Failure of EPDM/BN-Based Electrical Insulation. Polymers. 2020; 12(3):582. https://doi.org/10.3390/polym12030582
Chicago/Turabian StyleNazir, Muhammad Tariq, Faizan Tahir Butt, Bao Toan Phung, Guan Heng Yeoh, Ghulam Yasin, Shakeel Akram, Muhammad Shoaib Bhutta, Shahid Hussain, and Tuan Anh Nguyen. 2020. "Simulation and Experimental Investigation on Carbonized Tracking Failure of EPDM/BN-Based Electrical Insulation" Polymers 12, no. 3: 582. https://doi.org/10.3390/polym12030582
APA StyleNazir, M. T., Butt, F. T., Phung, B. T., Yeoh, G. H., Yasin, G., Akram, S., Bhutta, M. S., Hussain, S., & Nguyen, T. A. (2020). Simulation and Experimental Investigation on Carbonized Tracking Failure of EPDM/BN-Based Electrical Insulation. Polymers, 12(3), 582. https://doi.org/10.3390/polym12030582