Solid-State Synthesis of Water-Soluble Chitosan-g-Hydroxyethyl Cellulose Copolymers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Chemical Analysys
3.1.1. Fractional Analysis
3.1.2. Elemental Analysis
3.1.3. FTIR-Spectroscopy
3.1.4. UV/Vis-Spectrophotometry
3.1.5. Dynamic Light Scattering
3.1.6. ChsHEC Solution Characteristics
3.2. Materials Based on the Copolymers
3.2.1. Films
3.2.2. Polylactide Microparticles Stabilized with the Copolymers.
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
HEC | Hydroxyethyl cellulose |
EA | Elemental analysis |
UV | Ultra violet region |
DD | Degree of deacetylation |
Mw | Molecular weight |
DLS | Dynamic light scattering |
References
- Chenite, A.; Chaput, C.; Wang, D.; Combes, C.; Buschmann, M.D.; Hoemann, C.D. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2002, 21, 2155–2161. [Google Scholar] [CrossRef]
- Chen, J.J.; Zheng, L.X.; Chen, X.N.; Wang, Z.D.; Li, C.C.; Xiao, Y.N.; Guan, G.H.; Zhu, W.X. Synthesis and characterization of water-soluble chitosan grafted with hydrophilic aliphatic polyester. Int. J. Biolog. Macromol. 2015, 74, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Zargar, V.; Asghari, M.; Dashti, A. A Review on Chitin and Chitosan Polymers: Structure, Chemistry, Solubility, Derivatives, and Applications. Chem. Bio. Eng. Rev. 2015, 2, 204–226. [Google Scholar] [CrossRef]
- Kumbar, S.G.; Soppimath, K.S.; Aminabhavi, T.M. Synthesis and characterization of polyacrylamide-grafted chitosan hydrogel microspheres for the controlled release of indomethacin. J. Appl. Polym. Sci. 2003, 87, 1525–1536. [Google Scholar] [CrossRef]
- Mochalova, A.E.; Zaborschikova, N.V.; Knyazev, A.A.; Smirnova, L.A.; Izvozchikova, V.A.; Medvedeva, V.V.; Semchikov, Y.D. Graft polymerization of acrylamide on chitosan: Copolymer structure and properties. Polym. Sci. Ser. A 2006, 48, 918–923. [Google Scholar] [CrossRef]
- Jiang, Z.C.; Zhao, C.B.; Liu, X.H. Synthesis of poly(ethylene glycol)-graft-chitosan and using as ligand for fabrication of water-soluble quantum dots. Colloid Surf. B Biointerfaces 2014, 115, 260–266. [Google Scholar] [CrossRef]
- Gorochovceva, N.; Makuska, R. Synthesis and study of water-soluble chitosan-O-poly(ethylene glycol) graft copolymers. Eur. Polym. J. 2004, 40, 685–691. [Google Scholar] [CrossRef]
- Yazdani-Pedram, M.; Retuert, J. Homogeneous grafting reaction of vinyl pyrrolidone onto chitosan. J. Appl. Polym. Sci. 1997, 63, 1321–1326. [Google Scholar] [CrossRef]
- Huang, M.; Khor, E.; Lim, L.Y. Uptake and cytotoxicity of chitosan molecules and nanoparticles: Effects of molecular weight and degree of deacetylation. Pharm. Res. 2004, 21, 344–353. [Google Scholar] [CrossRef]
- Luo, L.-J.; Huang, C.-C.; Chen, H.-C.; Lai, J.-Y.; Matsusaki, M. Effect of deacetylation degree on controlled pilocarpine release from injectable chitosan-g-poly(N-isopropylacrylamide) carriers. Carbohyd. Polym. 2018, 197, 375–384. [Google Scholar] [CrossRef]
- Kiang, T.; Wen, J.; Lim, H.W.; Leong, K.W. The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials 2004, 25, 5293–5301. [Google Scholar] [CrossRef] [PubMed]
- Jennings, J.A. Controlling chitosan degradation properties in vitro and in vivo. In Chitosan Based Biomaterials; Jennings, J.A., Bumgardner, J.D., Eds.; Woodhead Publishing: Cambridge, UK, 2017; Volume 1, pp. 159–182. [Google Scholar]
- Hu, L.; Sun, Y.; Wu, Y. Advances in chitosan-based drug delivery vehicles. Nanoscale 2013, 5, 3103–3111. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Bae, C.; Kook, Y.-M.; Koh, W.-G.; Lee, K.; Park, M.H. Mesenchymal stem cell 3D encapsulation technologies for biomimetic microenvironment in tissue regeneration. Stem Cell Res. Ther. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Chen, J.; Liu, B.; Zhang, X.; Li, X.; Xu, T. Bioinks for jet-based bioprinting. Biopringing 2019, 16, e00060. [Google Scholar] [CrossRef]
- Dubinskaya, A.M. Transformations of organic compounds under the action of mechanical stress. Russ. Chem. Rev. 1999, 68, 637–652. [Google Scholar] [CrossRef]
- James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friscic, T.; Grepioni, F.; Harris, K.D.M.; Hyett, G.; Jones, W.; et al. Mechanochemistry: Opportunities for new and cleaner synthesis. Chem. Soc. Rev. 2012, 41, 413–447. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.W. Mechanochemical organic synthesis: Review. Chem. Soc. Rev. 2013, 42, 7668–7700. [Google Scholar] [CrossRef]
- Crawford, D.E.; Miskimmin, C.K.; Albadarin, A.B.; Walker, G.; James, S.L. Organic synthesis by Twin Screw Extrusion (TSE): Continuous, scalable and solvent-free. Green Chem. 2017, 6, 1507–1518. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.; Mack, J. Mechanochemistry and organic synthesis: From mystical to practical. Green Chem. 2018, 20, 1435–1443. [Google Scholar] [CrossRef]
- Demina, T.S.; Akopova, T.A.; Vladimirov, L.V.; Zelenetskii, A.N.; Markvicheva, E.A.; Grandfils, C. Polylactide-based microspheres prepared using solid-state copolymerized chitosan and d,l-lactide. Mater. Sci. Eng. C 2016, 59, 333–338. [Google Scholar] [CrossRef]
- Akopova, T.A.; Demina, T.S.; Cherkaev, G.V.; Khavpachev, M.A.; Bardakova, K.N.; Grachev, A.V.; Vladimirov, L.V.; Zelenetskii, A.N.; Timashev, P.S. Solvent-free synthesis and characterization of allyl chitosan derivatives. RSC Adv. 2019, 9, 20968–20975. [Google Scholar] [CrossRef] [Green Version]
- Akopova, T.A.; Zelenetskii, A.N.; Ozerin, A.N. Solid state synthesis and modification of chitosan. In Focus on Chitosan Research; Ferguson, A.N., O’Neill, A.G., Eds.; Nova Science Publishers: New York, NY, USA, 2012; Chapter 7; pp. 223–254. [Google Scholar]
- Brugnerotto, J.; Lizardi, J.; Goycoolea, F.M.; Argüelles-Monal, W.; Desbrières, J.; Rinaudo, M. An infrared investigation in relation with chitin and chitosan characterization. Polymer 2001, 42, 3569–3580. [Google Scholar] [CrossRef]
- Simionescu, C.; Oprea, C.V. Mechanochemical synthesis. Russ. Chem. Rev. 1988, 57, 283–297. [Google Scholar] [CrossRef]
- Butyagin, P.Y. Mechanical disordering and reactivity of solids. Chem. Rev. 1998, 23, 91–165. [Google Scholar]
- Moore, J.S. Polymer mechanochemistry: Techniques to generate molecular force via elongational flows. Chem. Soc. Rev. 2013, 42, 7497–7506. [Google Scholar]
- Beyer, M.K.; Clausen-Schaumann, H. Mechanochemistry: The mechanical activation of covalent bonds. Chem. Rev. 2005, 105, 2921–2948. [Google Scholar] [CrossRef]
- Tømmeraas, K.; Koping-Hoggard, M.; Varum, K.M.; Christensen, B.E.; Artursson, P.; Smidsrød, O. Preparation and characterisation of chitosans with oligosaccharide branches. Carbohydr. Res. 2002, 337, 2455–2462. [Google Scholar] [CrossRef]
- Pearson, F.G.; Marchessault, R.H.; Liang, C.Y. Infrared Spectra of Crystalline Polysaccharides. V. Chitin. J. Polym. Sci. 1960, 43, 101–116. [Google Scholar] [CrossRef]
- Duarte, M.L.; Ferreira, M.C.; Marvao, M.R.; Rocha, J. An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. Int. J. Biol. Macromol. 2002, 31, 1–8. [Google Scholar] [CrossRef]
- Bellamy, L.J. The Infrared Spectra of Complex Molecules, 2nd ed.; Wiley: Hoboken, NJ, USA, 1964. [Google Scholar]
- Ibrahim, D.M.; Kakarougkas, A.; Allam, N.K. Recent advances on electrospun scaffolds as matrices for tissue-engineered heart valves. Mater. Today Chem. 2017, 5, 11–23. [Google Scholar] [CrossRef]
- Lim, S.H.; Mao, H.Q. Electrospun scaffolds for stem cells engineering. Adv. Drug. Delivery Rev. 2009, 61, 1084–1096. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, J.D.; Schauer, C.L. A review: Electrospinning of biopolymer nanofibers and their applications. Polym. Rev. 2008, 48, 317–352. [Google Scholar] [CrossRef]
- Geng, X.; Kwon, O.H.; Jang, J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 2005, 26, 5427–5432. [Google Scholar] [CrossRef] [PubMed]
- Kalantaria, K.; Afifi, A.M.; Jahangirian, H.; Webster, T.J. Biomedical applications of chitosan electrospun nanofibers as a green polymer—Review. Carbohyd. Polym. 2019, 207, 588–600. [Google Scholar] [CrossRef] [PubMed]
- Kornev, V.A.; Grebenik, E.A.; Solovieva, A.B.; Dmitriev, R.I.; Timashev, P.S. Hydrogel-assisted neuroregeneration approaches towards brain injury therapy: A state-of-the-art review. Comput. Struct. Biotechnol. J. 2018, 16, 488–502. [Google Scholar] [CrossRef] [PubMed]
- Grebenik, E.; Surin, A.; Bardakova, K.; Demina, T.; Minaev, N.; Veryasova, N.; Artyukhova, M.; Krasilnikova, I.; Bakaeva, Z.; Sorokina, E.; et al. Chitosan-g-oligo(L,L-lactide) copolymer hydrogel for nervous tissue regeneration in glutamate excitotoxicity: In vitro feasibility evaluation. Biomed. Mater. 2019. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Eyster, T.W.; Ma, P.X. Nanostructured injectable cell microcarriers for tissue regeneration. Nanomedicine 2016, 11. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Nukavarapu, S.P.; Deng, M.; Jabbarzadeh, E.; Kofron, M.D.; Doty, S.B.; Abdel-Fattah, W.I.; Laurencin, C.T. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: In vitro degradation and in vivo bone regeneration studies. Acta Biomater. 2010, 6, 3457–3470. [Google Scholar] [CrossRef]
- Demina, T.S.; Sevrin, C.; Kapchiekue, C.; Akopova, T.A.; Grandfils, C. Chitosan-g-polyester microspheres: Effect of length and composition of grafted chains. Macromol. Mater. Eng. 2019, 304. [Google Scholar] [CrossRef]
Sample Code | Initial Polymers Composition, wt % | Content of Fraction, wt % | ||
---|---|---|---|---|
Soluble in Water | Soluble in 2% CH3COOH | Insoluble in 2% CH3COOH 3 | ||
ChsHEC-1 1 | Chitosan-20 HEC-80 | 77.6 | 19.8 | 2.6 |
ChsHEC-2 2 | Chitosan-50 HEC-50 | 42.7 | 49.8 | 7.5 |
ChsHEC-3 | Chitosan-50 HEC-50 | 47.3 | 30.6 | 22.1 |
Sample Code | Atomic Concentration, wt % | Chitosan Content, wt % | Chitosan/HEC Unit Ratio | ||
---|---|---|---|---|---|
C | H | N | |||
ChsHEC-1 | 47.50 | 7.42 | 0.11 | 1.3 | 1/76 |
ChsHEC-2 | 47.75 | 7.33 | 1.52 | 18 | 1/4 |
ChsHEC-3 | 45.18 | 7.04 | 1.03 | 12 | 1/7 |
Sample Code | η, mPa·s | Conductivity, mS·cm−1 | σ, mN/m |
---|---|---|---|
HEC 4 | 4 ± 0.02 | 0.3 ± 0.01 | 66 ± 0.2 |
Chitosan 4,6 | 6.7 ± 0.05 | 8.3 ± 0.2 | 63 ± 0.3 |
ChsHEC-1 4 | 3.5 ± 0.01 | 0.3 ± 0.01 | 62 ± 0.1 |
ChsHEC-2 4 | 2.7 ± 0.02 | 0.4 ± 0.01 | 60 ± 0.1 |
ChsHEC-3 4 | 3.3 ± 0.02 | 0.3 ± 0.02 | 61 ± 0.2 |
ChsHEC-1 5 | 434 ± 1 | 0.8 ± 0.01 | 60 ± 0.1 |
ChsHEC-2 5 | 176 ± 10 | 2.4 ± 0.1 | 56 ± 0.1 |
ChsHEC-3 5 | 397 ± 2 | 0.8 ± 0.03 | 60 ± 0.1 |
Sample Code | Chitosan Content, wt % | σ, MPa | ε, % | E, MPa |
---|---|---|---|---|
HEC | 0 | 13 ± 1 | 33 ± 2 | 44 ± 4 |
Chitosan | 100 | 47 ± 5 | 20 ± 4 | 1900 ± 200 |
Chitosan/HEC | 20 | 48 ± 5 | 40 ± 6 | 720 ± 100 |
Chitosan/HEC | 50 | 39 ± 5 | 31 ± 6 | 1100 ± 130 |
Chitosan/HEC | 80 | 50 ± 2 | 33 ± 4 | 1980 ± 130 |
ChsHEC-1 7 | 1.3 | 24 ± 3 | 52 ± 3 | 480 ± 40 |
ChsHEC-2 7 | 18 | 32 ± 4 | 25 ± 1 | 1340 ± 130 |
ChsHEC-3 7 | 12 | 21 ± 1 | 39 ± 2 | 560 ± 50 |
ChsHEC-1 8 | 98.7 | 58 ± 2 | 23 ± 4 | 2900 ± 100 |
ChsHEC-3 8 | 88 | 66 ± 3 | 13 ± 2 | 2100 ± 400 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demina, T.S.; Birdibekova, A.V.; Svidchenko, E.A.; Ivanov, P.L.; Kuryanova, A.S.; Kurkin, T.S.; Khaibullin, Z.I.; Goncharuk, G.P.; Zharikova, T.M.; Bhuniya, S.; et al. Solid-State Synthesis of Water-Soluble Chitosan-g-Hydroxyethyl Cellulose Copolymers. Polymers 2020, 12, 611. https://doi.org/10.3390/polym12030611
Demina TS, Birdibekova AV, Svidchenko EA, Ivanov PL, Kuryanova AS, Kurkin TS, Khaibullin ZI, Goncharuk GP, Zharikova TM, Bhuniya S, et al. Solid-State Synthesis of Water-Soluble Chitosan-g-Hydroxyethyl Cellulose Copolymers. Polymers. 2020; 12(3):611. https://doi.org/10.3390/polym12030611
Chicago/Turabian StyleDemina, Tatiana S., Aisylu V. Birdibekova, Eugenia A. Svidchenko, Pavel L. Ivanov, Anastasia S. Kuryanova, Tikhon S. Kurkin, Zulfar I. Khaibullin, Galina P. Goncharuk, Tatiana M. Zharikova, Sankarprasad Bhuniya, and et al. 2020. "Solid-State Synthesis of Water-Soluble Chitosan-g-Hydroxyethyl Cellulose Copolymers" Polymers 12, no. 3: 611. https://doi.org/10.3390/polym12030611
APA StyleDemina, T. S., Birdibekova, A. V., Svidchenko, E. A., Ivanov, P. L., Kuryanova, A. S., Kurkin, T. S., Khaibullin, Z. I., Goncharuk, G. P., Zharikova, T. M., Bhuniya, S., Grandfils, C., Timashev, P. S., & Akopova, T. A. (2020). Solid-State Synthesis of Water-Soluble Chitosan-g-Hydroxyethyl Cellulose Copolymers. Polymers, 12(3), 611. https://doi.org/10.3390/polym12030611