Unveiling the Uniqueness of Crystal Structure and Crystalline Phase Behavior of Anhydrous Octyl β-D-Glucoside Using Aligned Assembly on a Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Glycolipid Samples
2.2. Assembly of Aligned Glycolipid Film Samples
2.3. Experimental Procedure
3. Results and Discussion
3.1. Crystal Structure
3.2. Crystal Phase Transition Behavior
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Michel, H.; Oesterhelt, D. Three-dimensional crystals of membrane proteins: Bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 1980, 77, 1283–1285. [Google Scholar] [CrossRef] [Green Version]
- Garavito, R.M.; Ferguson-Miller, S. Detergents as tools in membrane biochemistry. J. Biol. Chem. 2001, 276, 32403–32406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kropshofer, H.; Spindeldreher, S.; Röhn, T.A.; Platania, N.; Grygar, C.; Daniel, N.; Wölpl, A.; Langen, H.; Horejsi, V.; Vogt, A.B. Tetraspan microdomains distinct from lipid rafts enrich select peptide–MHC class II complexes. Nat. Immunol. 2002, 3, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Liemann, S.; Chandran, K.; Baker, T.S.; Nibert, M.L.; Harrison, S.C. Structure of the reovirus membrane-penetration protein, μ1, in a complex with its protector protein, σ3. Cell 2002, 108, 283–295. [Google Scholar] [CrossRef] [Green Version]
- Nollert, P. Membrane protein crystallization in amphiphile phases: Practical and theoretical considerations. Prog. Biophys. Mol. Biol. 2005, 88, 339–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quick, M.; Winther, A.M.L.; Shi, L.; Nissen, P.; Weinstein, H.; Javitch, J.A. Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation. Proc. Natl. Acad. Sci. USA 2009, 106, 5563–5568. [Google Scholar] [CrossRef] [Green Version]
- Heerklotz, H.; Tsamaloukas, A.D.; Keller, S. Monitoring detergent-mediated solubilization and reconstitution of lipid membranes by isothermal titration calorimetry. Nat. Protoc. 2009, 4, 686–697. [Google Scholar] [CrossRef]
- Claxton, D.P.; Quick, M.; Shi, L.; De Carvalho, F.D.; Weinstein, H.; Javitch, J.A.; Mchaourab, H.S. Ion/substrate-dependent conformational dynamics of a bacterial homolog of neurotransmitter: Sodium symporters. Nat. Struct. Mol. Biol. 2010, 17, 822–830. [Google Scholar] [CrossRef]
- Parker, J.L.; Newstead, S. Membrane protein crystallisation: Current trends and future perspectives. Adv. Exp. Med. Biol. 2016, 922, 61–72. [Google Scholar]
- Jeffrey, G.A.; Bhattacharjee, S. Carbohydrate liquid-crystals. Carbohydr. Res. 1983, 115, 53–58. [Google Scholar] [CrossRef]
- Dorset, D.L.; Rosenbusch, J.P. Solid state properties of anomeric 1-O-n-octyl-D-glucopyranosides. Chem. Phys. Lipids 1981, 29, 299–307. [Google Scholar] [CrossRef]
- Jeffrey, G.A. Carbohydrate liquid crystals. Acc. Chem. Res. 1986, 19, 168–173. [Google Scholar] [CrossRef]
- Straathof, A.J.J.; Van Bekkum, H.; Kieboom, A.P.G. Solid state and solution properties of octyl d-glucopyranosides. Starch Stärke 1988, 40, 438–440. [Google Scholar] [CrossRef]
- Dorset, D.L. Anomeric exchange and the structure of n-alkyl D-glucopyranosides. A study of binary phase behavior. Carbohydr. Res. 1990, 206, 193–205. [Google Scholar] [CrossRef]
- Jeffrey, G.A.; Yeon, Y. The crystal structure of a 1: 1 complex of n-octyl α-and β-d-glucopyranoside at 123 K. Carbohydr. Res. 1992, 237, 45–55. [Google Scholar] [CrossRef]
- Sakya, P.; Seddon, J.M.; Templer, R.H. Lyotropic phase behavior of n-octyl-1-O-β-D-glucopyranoside and its thio derivative n-octyl-1-S-β-D-glucopyranoside. J. Phys. II 1994, 4, 1311–1331. [Google Scholar]
- Nilsson, F.; Söderman, O.; Johansson, I. Physical−chemical properties of the n-octyl β-d-glucoside/water system. A phase diagram, self-diffusion NMR, and SAXS study. Langmuir 1996, 12, 902–908. [Google Scholar] [CrossRef]
- Bonicelli, M.G.; Ceccaroni, G.F.; La Mesa, C. Lyotropic and thermotropic behavior of alkylglucosides and related compounds. Colloid Polym. Sci. 1998, 276, 109–116. [Google Scholar] [CrossRef]
- Dörfler, H.D.; Göpfert, A. Lyotropic liquid crystals in binary systems n-alkyl glycosides/water. J. Dispers. Sci. Technol. 1999, 20, 35–58. [Google Scholar] [CrossRef]
- Häntzschel, D.; Schulte, J.; Enders, S.; Quitzsch, K. Thermotropic and lyotropic properties of n-alkyl-β-D-glucopyranoside surfactants. Phys. Chem. Chem. Phys. 1999, 1, 895–904. [Google Scholar] [CrossRef]
- Boyd, B.J.; Drummond, C.J.; Krodkiewska, I.; Grieser, F. How chain length, headgroup polymerization, and anomeric configuration govern the thermotropic and lyotropic liquid crystalline phase behavior and the air− water interfacial adsorption of glucose-based surfactants. Langmuir 2000, 16, 7359–7367. [Google Scholar] [CrossRef]
- Kocherbitov, V.; Söderman, O.; Wadsö, L. Phase diagram and thermodynamics of the n-octyl β-d-glucoside/water system. J. Phys. Chem. B 2002, 106, 2910–2917. [Google Scholar] [CrossRef]
- Ogawa, S.; Asakura, K.; Osanai, S. Glass transition behavior of octyl β-D-glucoside and octyl β-D-thioglucoside/water binary mixtures. Carbohydr. Res. 2010, 345, 2534–2541. [Google Scholar] [CrossRef]
- Karukstis, K.K.; Duim, W.C.; Van Hecke, G.R.; Hara, N. Relevant Lyotropic Liquid Crystalline Phases in Mixtures of n-Octyl β-D-Glucoside and Water. Determination of the Phase Diagram by Fluorescence Spectroscopy. J. Phys. Chem. B 2012, 116, 3816–3822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, S.; Asakura, K.; Osanai, S. Freezing and melting behavior of an octyl β-d-glucoside–water binary system–inhibitory effect of octyl β-D-glucoside on ice crystal formation. Phys. Chem. Chem. Phys. 2012, 14, 16312–16320. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Asakura, K.; Osanai, S. Thermotropic and glass transition behaviors of n-alkyl β-D-glucosides. RSC Adv. 2013, 3, 21439–21446. [Google Scholar] [CrossRef]
- Björklund, S.; Kocherbitov, V. Hydration-induced phase transitions in surfactant and lipid films. Langmuir 2016, 32, 5223–5232. [Google Scholar] [CrossRef]
- Ogawa, S. Phase behavior of N-alkyl glucosides in the arid system–Recent developments and experimental notes. In Glucosides, Sources, Applications, and New Research; Boyd, I., Ed.; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2016; pp. 63–98. [Google Scholar]
- Hashim, R.; Sugimura, A.; Nguan, H.S.; Rahman, M.; Zimmermann, H. Anhydrous octyl-glucoside phase transition from lamellar to isotropic induced by electric and magnetic fields. J. Chem. Phys. 2017, 146, 084702. [Google Scholar] [CrossRef]
- Hashim, R.; Zahid, N.I.; Aripin, N.F.K.; Ogawa, S.; Sugimura, A. Dry thermotropic glycolipid self-assembly: A review. J. Oleo Sci. 2018, 67, 651–668. [Google Scholar] [CrossRef] [Green Version]
- Zahid, N.I.; Ishak, K.A.; Timimi, B.A.; Hashim, R. Effect of chain branching on orientational ordering in glycolipid self-assembly by 2H-NMR using extrinsic probes. Mater. Today Proc. 2018, 5, S115–S124. [Google Scholar] [CrossRef]
- Khvostichenko, D.S.; Ng, J.J.; Perry, S.L.; Menon, M.; Kenis, P.J. Effects of detergent β-octylglucoside and phosphate salt solutions on phase behavior of monoolein mesophases. Biophys. J. 2013, 105, 1848–1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roger, K.; Liebi, M.; Heimdal, J.; Pham, Q.D.; Sparr, E. Controlling water evaporation through self-assembly. Proc. Natl. Acad. Sci. USA 2016, 113, 10275–10280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsh, D. III Glycolipids. In Handbook of Lipid Bilayers, 2nd ed.; Marsh, D., Ed.; Taylor and Francis Group: Boca Raton, UK, 2013; pp. 861–1114. [Google Scholar]
- Abe, Y.; Harata, K. Crystal structures of glycolipids. In Polysaccharides Structural Diversity and Functional Versatility, 2nd ed.; Dumitriu, S., Ed.; Taylor and Francis Group: Boca Raton, UK, 2004; pp. 743–771. [Google Scholar]
- Ogawa, S.; Ozaki, Y.; Takahashi, I. Structural insights into solid-to-solid phase transition and modulated crystal formation in octyl-β-D-Galactoside Crystals. ChemPhysChem 2016, 17, 2808–2812. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Takahashi, I. Structural characterization of perpendicularly aligned submicrometer-thick synthetic glycolipid polycrystalline films using conventional X-ray diffraction. Crystals 2017, 7, 356. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Okumura, Y.; Sunamoto, J. Structure and thermal history dependant phase behavior of hydrated synthetic sphingomyelin analogue: 1, 2-dimyristamido-1, 2-deoxyphosphatidylcholine. Biochim. Biophys. Acta Biomembr. 2005, 1713, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Chen, D.; Marcozzi, A.; Zheng, L.; Su, J.; Pesce, D.; Zajaczkowski, W.; Kolbe, A.; Pisula, W.; Müllen, K.; et al. Thermotropic liquid crystals from biomacromolecules. Proc. Natl. Acad. Sci. USA 2014, 111, 18596–18600. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.J.; Tristram-Nagle, S.; Suter, R.M.; Nagle, J.F. Structure of the ripple phase in lecithin bilayers. Proc. Natl. Acad. Sci. USA 1996, 93, 7008–7012. [Google Scholar] [CrossRef] [Green Version]
- Date, R.W.; Luckhurst, G.R.; Shuman, M.; Seddon, J.M. Novel modulated hexatic phases in symmetric liquid crystal dimers. J. Phys. II 1995, 5, 587–605. [Google Scholar] [CrossRef]
- Fournier, J.B. Coupling between membrane tilt-difference and dilation; a new “ripple” instability and multiple crystalline inclusions phases. Europhys. Lett. 1998, 43, 725–730. [Google Scholar] [CrossRef]
- Lenz, O.; Schmid, F. Structure of symmetric and asymmetric “ripple” phases in lipid bilayers. Phys. Rev. Lett. 2007, 98, 058104. [Google Scholar] [CrossRef] [Green Version]
- Dorset, D.L.; Moss, B.; Wittmann, J.C.; Lotz, B. The pre-melt phase of n-alkanes: Crystallographic evidence for a kinked chain structure. Proc. Natl. Acad. Sci. USA 1984, 81, 1913–1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyagi, O.S.; Bisht, H.S.; Chatterjee, A.K. Phase transition, conformational disorder, and chain packing in crystalline long-chain symmetrical alkyl ethers and symmetrical alkenes. J. Phys. Chem. B 2004, 108, 3010–3016. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogawa, S.; Takahashi, I. Unveiling the Uniqueness of Crystal Structure and Crystalline Phase Behavior of Anhydrous Octyl β-D-Glucoside Using Aligned Assembly on a Surface. Polymers 2020, 12, 671. https://doi.org/10.3390/polym12030671
Ogawa S, Takahashi I. Unveiling the Uniqueness of Crystal Structure and Crystalline Phase Behavior of Anhydrous Octyl β-D-Glucoside Using Aligned Assembly on a Surface. Polymers. 2020; 12(3):671. https://doi.org/10.3390/polym12030671
Chicago/Turabian StyleOgawa, Shigesaburo, and Isao Takahashi. 2020. "Unveiling the Uniqueness of Crystal Structure and Crystalline Phase Behavior of Anhydrous Octyl β-D-Glucoside Using Aligned Assembly on a Surface" Polymers 12, no. 3: 671. https://doi.org/10.3390/polym12030671
APA StyleOgawa, S., & Takahashi, I. (2020). Unveiling the Uniqueness of Crystal Structure and Crystalline Phase Behavior of Anhydrous Octyl β-D-Glucoside Using Aligned Assembly on a Surface. Polymers, 12(3), 671. https://doi.org/10.3390/polym12030671