Influence of Magnetic Nanoparticles on Modified Polypyrrole/m-Phenylediamine for Adsorption of Cr(VI) from Aqueous Solution
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of PPy–mPD/Fe3O4 Nanocomposite
2.3. Characterisations
2.4. Batch Adsorption Experiments
3. Results and Discussion
3.1. Morphological Characterisations
3.2. Fourier Transform Infrared Analysis
3.3. X-ray diffraction, Brunauer–Emmet–Teller, Thermogravimetric Analysis and Vibrating Sample Magnetometer Studies
3.4. Adsoprtion Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Z.; Shen, Q.; Xue, J.; Jia, H.; Xue, B.; Liu, X.; Qi, L. Annealing temperature effect on 3D hierarchically porous NiO/Ni for removal of trace hexavalent chromium. Mater. Chem. Phys. 2020, 240, 122140. [Google Scholar] [CrossRef]
- Hato, M.J.; Maponya, T.C.; Ramohlola, K.E.; Modibane, K.D.; Maity, A.; Monama, G.R.; Makgopa, K.; Bello, A. Polymer-Based magnetic nanocomposites for the removal of highly toxic hexavalent chromium from aqueous solutions. In Advanced Nanostructured Materials for Environmental Remediation, Environmental Chemistry for a Sustainable World; Naushad, M., Rajendran, S., Gracia, F., Eds.; Springer: Cham, Switzerland, 2019; Volume 25, pp. 189–227. [Google Scholar]
- Kera, N.H.; Bhaumik, M.; Pillay, K.; Ray, S.S.; Maity, A. m-Phenylenediamine-modified polypyrrole as an efficient adsorbent for removal of highly toxic hexavalent chromium in water. Mater. Today Commun. 2018, 15, 153–164. [Google Scholar] [CrossRef]
- Yuan, Z.; Cheng, X.; Zhong, L.; Wu, R.; Zheng, Y. Preparation, characterization and performance of an electrospun carbon nanofiber mat applied in hexavalent chromium removal from aqueous solution. J. Environ. Sci. 2019, 77, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Shaban, M.; Abukhadra, M.R.; Khan, A.A.P. Removal of Congo red, methulene blue and Cr(VI) ions from water using natural serpentine. J. Taiwan Inst. Chem. Eng. 2018, 82, 102–116. [Google Scholar] [CrossRef]
- Wang, J.; Pan, K.; He, Q.; Cao, B. Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution. J. Hazard. Mater. 2013, 244, 121–129. [Google Scholar] [CrossRef]
- Cui, L.; Wang, Y.; Gao, L.; Hu, L.; Yan, L.; Wei, Q.; Du, B. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property. Chem. Eng. J. 2015, 281, 1–10. [Google Scholar] [CrossRef]
- Bhaumik, M.; Agarwal, S.; Gupta, V.K.; Maity, A. Enhanced removal of Cr(VI) from aqueous solutions using polypyrrole wrapped oxidized MWCNTs nanocomposites adsorbent. J. Colloid Interface Sci. 2016, 470, 257–267. [Google Scholar] [CrossRef]
- Bhaumik, M.; Maity, A.; Srinivasu, V.V.; Onyango, M.S. Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J. Hazard. Mater. 2011, 190, 381–390. [Google Scholar] [CrossRef]
- Horst, M.F.; Alvarez, M.; Lassalle, V.L. Removal of heavy metals from wastewater using magnetic nanocomposites: Analysis of the experimental conditions. J. Sep. Sci. Technol. 2016, 51, 550–563. [Google Scholar] [CrossRef]
- Can, M.M.; Fırat, T.; Özcan, Ş. Interparticle interaction effects on magnetic behaviours of hematite hematite (α-Fe2O3) nanoparticles. Phys. B 2011, 406, 2483–2487. [Google Scholar] [CrossRef]
- Can, M.M.; Coşkun, M.; Fırat, T. A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), using ferromagnetic resonance. J. Alloys Compd. 2012, 542, 241–247. [Google Scholar] [CrossRef]
- Liu, J.; Dai, C.; Hu, Y. Aquoeous aggregation behaviour of citric acid coated magnetite nanoparticles: Effects of pH, cations, anions, and humic acid. Environ. Res. 2018, 161, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Ilankoon, N. Use of iron oxide magnetic nanosorbents for Cr(VI) removal from aqueous solutions: A review. Int. J. Eng. Res. Appl. 2014, 4, 55–63. [Google Scholar]
- Kumar, S.; Nair, R.R.; Pillai, P.B.; Gupta, S.N.; Iyengar, M.A.R.; Sood, A.K. Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead an arsenic from water. ACS Appl. Mater. Interfaces 2014, 6, 17426–17436. [Google Scholar] [CrossRef]
- Shen, H.; Pan, S.; Zhang, Y.; Huang, X.; Gong, H. A new insight on the adsorption mechanism of amino-functionalized nano-Fe3O4 magnetic polymers in Cu(II), Cr(VI) co-existing water system. Chem. Eng. J. 2012, 183, 180–191. [Google Scholar] [CrossRef]
- Ballav, N.; Choi, H.J.; Mishra, S.B.; Maity, A. Synthesis, characterization of Fe3O4@glycine doped polypyrrole magnetic nanocomposites and their potential performance to remove toxic Cr(VI). J. Ind. Eng. Chem. 2014, 20, 4085–4093. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.; Wu, Y.; Chen, X.; Leng, L.; Wang, H.; Li, H.; Zeng, G. Facile synthesis of polypyrrole decorated reduced graphene oxide-Fe3O4 magnetic composites and its application for the Cr(VI) removal. Chem. Eng. J. 2015, 262, 597–606. [Google Scholar] [CrossRef]
- Chen, H.-C.; Chang, C.-C.; Yang, K.-H.; Mai, F.-D.; Tseng, C.-L.; Chen, L.-Y.; Hwang, B.-J.; Liu, Y.-H. Polypyrrole electrode with a greater electroactive surface electrchemically polymerized in plasmon-activated water. J. Taiwan. Inst. Chem. Eng. 2018, 82, 252–260. [Google Scholar] [CrossRef]
- Fatima, H.; Lee, D.-H.; Yoon, H.J.; Kim, K.-S. Shape-Controlled synthesis of magnetic Fe3O4 nanoparticles with different precursors and capping agents. RCS Adv. 2018, 8, 22917–22923. [Google Scholar] [CrossRef] [Green Version]
- Mthombeni, N.H.; Mbakop, S.; Ochieng, S.; Onyango, M.S. Vanadium (V) adsoprtion isotherms and kinetics using polypyrrole coated magetized natural zeolite. J. Taiwan. Inst. Chem. Eng. 2016, 66, 172–180. [Google Scholar] [CrossRef]
- Tang, L.; Fang, Y.; Pang, Y.; Zeng, G.; Wanga, J.; Zhou, Y.; Deng, Y.; Yang, G.; Cai, Y.; Chen, J. Synergistic adsorption and reduction of hexavalent chromium using highly uniform polyaniline-magnetic mesoporous silica composite. Chem. Eng. J. 2014, 254, 302–312. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, F.; Li, C.; Dai, X.; Ma, J. Nano-/micro-confined water in graphene hydrogel as superadsorbents for water purification. Nano Micro Lett. 2020, 12, 2. [Google Scholar] [CrossRef] [Green Version]
- Zhen, G.; Muir, B.W.; Moffat, B.A.; Harbour, P.; Murray, K.S.; Moubaraki, B.; Suzuki, K.; Madsen, I.; Agron-Olshina, N.; Waddington, L.; et al. Comparative study of the magnetic behavior of spherical and cubic superparamagnetic iron oxide nanoparticles. J. Phys. Chem. C 2010, 115, 327–334. [Google Scholar] [CrossRef]
- Liu, C.; Liu, H.; Xiong, T.; Xu, A.; Pan, B.; Tang, K. Graphene oxide reinforced alginate/PVA double network hydrogels for efficient dye removal. Polymers 2018, 10, 835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhaumik, M.; Maity, A.; Srinivasu, V.V.; Onyango, M.S. Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers. Chem. Eng. J. 2012, 181–182, 323–333. [Google Scholar] [CrossRef]
- Shahid, M.; Shamshad, S.; Rafiq, M.; Khalid, S.; Bibi, I.; Niazi, K.N.; Dumat, C.; Rashid, M.I. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere 2017, 178, 513–533. [Google Scholar] [CrossRef]
- Bayazit, Ş.S.; Kerkez, Ö. Hexavalent chromium adsorption on superparamagnetic multi-wall carbon nanotubes and activated carbon composites. Chem. Eng. Res. Des. 2014, 92, 2725–2733. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–470. [Google Scholar]
- Salam, M.A. Preparation and characterization of chitin/magnetite/multiwalled carbon nanotubes magnetic nanocomposite for toxic hexavalent chromium removal from solution. J. Mol. Liq. 2017, 233, 197–202. [Google Scholar] [CrossRef]
- Elfeky, S.A.; Mahmoud, S.E.; Youssef, A.F. Applications of CTAB modified magnetic nanoparticles for removal of chromium (VI) from contaminated water. J. Adv. Res. 2017, 8, 435–443. [Google Scholar] [CrossRef]
- Hou, T.; Kong, L.; Guo, X.; Wu, Y.; Wang, F.; Wen, Y.; Yang, H. Magnetic ferrous-doped graphene for improving Cr(VI) removal. Mater. Res. Express 2016, 3, 1–8. [Google Scholar] [CrossRef]
- Zhang, Y.; Chi, H.; Zhang, W.; Sun, Y.; Liang, Q.; Gu, Y.; Jing, R. Highly efficient adsorption of copper ions by a PVP-reduced graphene oxide based on a new adsorptions mechanism. Nano Micro Lett. 2014, 6, 80–87. [Google Scholar] [CrossRef]
- Bhaumik, M.; McCrindle, R.; Maity, A. Efficient removal of Congo red from aqueous solutions by adsorption onto interconnected polypyrrole-polyaniline nanofibers. Chem. Eng. J. 2013, 228, 506–515. [Google Scholar] [CrossRef]
- Guo, X.; Du, B.; Wei, Q.; Yang, J.; Hu, L.; Yan, L.; Xu, W. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water. J. Hazard. Mater. 2014, 278, 211–220. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Shen, H.Y.; Pan, S.D.; Hu, M.Q. Synthesis, characterization and properties of ethylenediamine-functionalized Fe3O4 magnetic polymers for removal of Cr(VI) in wastewater. J. Hazard. Mater. 2010, 182, 295–302. [Google Scholar] [CrossRef]
- Fang, X.B.; Fang, Z.; Tsang, P.K.E. Selective adsorption of Cr(VI) from aqueous solution by EDA-Fe3O4 nanoparticles prepared from steel pickling waste liquor. Appl. Surf. Sci. 2014, 314, 655–662. [Google Scholar] [CrossRef]
- Wang, W.; Cai, K.; Wu, X.; Shao, X.; Yang, X. A novel poly(m-phenylenediamine)/reduced graphene oxide/nickel ferrite magnetic adsorbent with excellent removal ability of dyes and Cr(VI). J. Alloys Compd. 2017, 722, 532–543. [Google Scholar] [CrossRef]
- Wang, N.; Ouyang, X.-K.; Yang, L.-Y.; Omer, A.M. Fabrication of a magnetic cellulose nanocrystal/metal-organic framework composite for removal of Pb(II) from water. ACS Sustain. Chem. Eng. 2017, 5, 10447–10458. [Google Scholar] [CrossRef]
Isotherm Model | Temperature | |||
---|---|---|---|---|
15 °C | 25 °C | 35 °C | 45 °C | |
Langmuir | - | |||
Linear | ||||
qm | 454.5 | 555.6 | 625 | 714.3 |
KL | 0.338 | 0.194 | 0.314 | 0.583 |
RL | 0.00838 | 0.01451 | 0.00902 | 0.00488 |
R2 | 0.9997 | 0.9982 | 0.9986 | 0.9996 |
Non-linear | - | |||
Best-fit values | ||||
qm | 440.6 | 522.4 | 596.5 | 661.0 |
KL | 0.7719 | 1.914 | 8.046 | 13.05 |
Std. Error | - | |||
qm | 6.038 | 15.80 | 15.01 | 19.06 |
KL | 0.09790 | 0.5212 | 1.483 | 2.537 |
95% Confidence Intervals | - | |||
qm | 426.9–454.2 | 486.6–558.1 | 562.6–630.5 | 617.9–704.1 |
KL | 0.5505–0.9934 | 0.7353–3.093 | 4.692–11.40 | 7.317–18.79 |
Goodness of Fit | - | |||
Degrees of Freedom | 9 | 9 | 9 | 9 |
R2 | 0.9611 | 0.9536 | 0.9310 | 0.9250 |
Absolute Sum of Squares | 2592 | 6727 | 15505 | 24061 |
Sy.x | 16.97 | 27.34 | 41.51 | 51.71 |
Number of points | - | |||
Analysed | 11 | 11 | 11 | 11 |
Freundlich | - | |||
Linear | ||||
KF | 240.495 | 287.349 | 370.369 | 415.715 |
N | 8.46 | 7.94 | 9.5 | 9.18 |
R2 | 0.8829 | 0.9358 | 0.8536 | 0.845 |
Non-linear | - | |||
Best-fit values | ||||
KF | 259.1 | 303.1 | 388.2 | 435.5 |
N | 9.816 | 8.847 | 10.76 | 10.47 |
Std. Error | - | |||
KF | 17.73 | 14.53 | 21.38 | 23.13 |
N | 1.342 | 0.7892 | 1.391 | 1.319 |
95% Confidence Intervals | - | |||
KF | 219.0–299.2 | 270.3–336.0 | 339.8–436.6 | 383.2–487.8 |
N | 6.780–12.85 | 7.062–10.63 | 7.613–13.91 | 7.482–13.45 |
Goodness of Fit | - | |||
Degrees of Freedom | 9 | 9 | 9 | 9 |
R2 | 0.8899 | 0.8747 | 0.9052 | 0.9102 |
Absolute Sum of Squares | 7329 | 18170 | 21322 | 28790 |
Sy.x | 28.54 | 44.39 | 48.67 | 56.56 |
Number of points | - | |||
Analysed | 11 | 11 | 11 | 11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maponya, T.C.; Ramohlola, K.E.; Kera, N.H.; Modibane, K.D.; Maity, A.; Katata-Seru, L.M.; Hato, M.J. Influence of Magnetic Nanoparticles on Modified Polypyrrole/m-Phenylediamine for Adsorption of Cr(VI) from Aqueous Solution. Polymers 2020, 12, 679. https://doi.org/10.3390/polym12030679
Maponya TC, Ramohlola KE, Kera NH, Modibane KD, Maity A, Katata-Seru LM, Hato MJ. Influence of Magnetic Nanoparticles on Modified Polypyrrole/m-Phenylediamine for Adsorption of Cr(VI) from Aqueous Solution. Polymers. 2020; 12(3):679. https://doi.org/10.3390/polym12030679
Chicago/Turabian StyleMaponya, Thabiso Carol, Kabelo Edmond Ramohlola, Nazia Hassan Kera, Kwena Desmond Modibane, Arjun Maity, Lebogang Maureen Katata-Seru, and Mpitloane Joseph Hato. 2020. "Influence of Magnetic Nanoparticles on Modified Polypyrrole/m-Phenylediamine for Adsorption of Cr(VI) from Aqueous Solution" Polymers 12, no. 3: 679. https://doi.org/10.3390/polym12030679
APA StyleMaponya, T. C., Ramohlola, K. E., Kera, N. H., Modibane, K. D., Maity, A., Katata-Seru, L. M., & Hato, M. J. (2020). Influence of Magnetic Nanoparticles on Modified Polypyrrole/m-Phenylediamine for Adsorption of Cr(VI) from Aqueous Solution. Polymers, 12(3), 679. https://doi.org/10.3390/polym12030679