Waterborne Intumescent Coatings Containing Industrial and Bio-Fillers for Fire Protection of Timber Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate
2.2. Intumescent Coatings
2.3. Application of Intumescent Coatings
- The initial mass of the substrate was measured before applying the coating.
- The sides of the wood sample were covered with a tape to ensure that only one square surface was treated.
- A first layer of each formulation was applied with a paintbrush.
- The tape was then removed to get rid of the excess paint accidentally leaked on to the sides.
- The painted substrate’s weight was measured. The mass difference provided the amount of formulation applied for each sample.
- Some extra coating was applied, if necessary, to reach the desired mass. The final coated samples (Figure 1) were then placed in a fume hood (at the air flux of 0.030 m3/s) for 1 h before being transferred to the conditioning room for a minimum of one week.
2.4. Cone Calorimeter
2.5. Raman Spectroscopy
3. Results and Discussion
3.1. Cone Calorimeter Results
3.1.1. Heat Release Rates and Peaks to Heat Release Rate
3.1.2. Effective Heat of Combustion
with | : | Effective Heat of Combustion | (kJ/g or MJ/kg) | |
: | Time of test beginning | (s) | ||
: | Time of test end | (s) | ||
(t) | : | Instantaneous Heat Release Rate | (kW) | |
t | : | Time | (s) | |
: | Total mass lost from t0 to tf | (g) |
3.1.3. Time to Ignition
3.1.4. The Flaming Duration
3.1.5. Production of Carbon Monoxide and Carbon Dioxide
3.1.6. Smoke Production
3.1.7. Back Surface Temperature
3.2. Raman Spectroscopy Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Rowell, R.M. Chemical modification of wood. In Handbook of Engineering Biopolymers—Homopolymers, Blends and Composites; Fakirov, S., Bhattacharyya, D., Eds.; Carl Hanser Verlag GmBH & Co. KG: Munich, Germany, 2007; pp. 673–692. [Google Scholar]
- Čekovská, H.; Gaff, M.; Osvaldová, L.M.; Kačík, F.; Kubs, J.; Kaplan, L. Fire resistance of thermally modified wood. Bioresources 2017, 12, 947–959. [Google Scholar] [CrossRef]
- British Standards Institution (BSI). Eurocode 5. Design of Timber Structures. Part 1-2: General. Structural Fire Design; BS EN 1995-1-1: 2004; BSI: London, UK, 2004. [Google Scholar]
- Lowden, L.A.; Hull, T.R. Flammability behaviour of wood and a review of the methods for its reduction. Fire Sci. Rev. 2013, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Pabelina, K.; Lumban, C.O.; Ramos, H.J. Plasma impregnation of wood with fire retardants. Nucl. Instrum. Methods Phys. Res. 2012, 272, 365–369. [Google Scholar] [CrossRef]
- Mariappan, T.; Agarwal, A.; Ray, S. Influence of titanium dioxide on the thermal insulation of waterborne intumescent fire protective paints to structural steel. Prog. Org. Coat. 2017, 111, 67–74. [Google Scholar] [CrossRef]
- Alongi, J.; Han, Z.; Bourbigot, S. Intumescence: Tradition versus novelty. A comprehensive review. Prog. Polym. Sci. 2015, 51, 28–73. [Google Scholar] [CrossRef]
- De Sá, S.C.; de Souza, M.M.; Peres, R.S.; Zmozinski, A.V.; Braga, R.M.; de Araújo Melo, D.M.; Ferreira, C.A. Environmentally friendly intumescent coatings formulated with vegetable compounds. Prog. Org. Coat. 2017, 113, 47–59. [Google Scholar] [CrossRef]
- Costes, L.; Laoutid, F.; Brohez, S.; Dubois, P. Bio-based flame retardants: When nature meets fire protection. Mater. Sci. Eng. R Rep. 2017, 117, 1–25. [Google Scholar] [CrossRef]
- Yew, M.C.; Ramli Sulong, N.H.; Yew, M.K.; Amalina, M.A.; Johan, M.R. The formulation and study of the thermal stability and mechanical properties of an acrylic coating using chicken eggshell as a novel bio-filler. Prog. Org. Coat. 2013, 76, 1549–1555. [Google Scholar] [CrossRef]
- Yew, M.C.; Yew, M.K.; Saw, L.H.; Ng, T.C.; Durairaj, R.; Beh, J.H. Influences of nano bio-filler on the fire-resistive and mechanical properties of water-based intumescent coatings. Prog. Org. Coat. 2018, 124, 33–40. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, J.; Tang, Q.; Zhang, M.; Shen, L.; Tian, W.; Zhang, Y.; Sun, Z. Shell powder as a novel bio-filler for thermal insulation coatings. Chin. J. Chem. Eng. 2019, 27, 452–458. [Google Scholar] [CrossRef]
- Sophia, M.; Sakthieswaran, N. Synergistic effect of mineral admixture and bio-carbonate fillers on the physico-mechanical properties of gypsum plaster. Constr. Build. Mater. 2019, 204, 419–439. [Google Scholar] [CrossRef]
- Qian, W.; Li, X.; Zhou, J.; Liu, Y.; Wu, Z. High synergistic effects of natural-based tea saponin in intumescent flame-retardant coatings for enhancement of flame retardancy and pyrolysis performance. Prog. Org. Coat. 2019, 127, 408–418. [Google Scholar] [CrossRef]
- Liu, Z.; Dai, M.; Zhang, Y.; Gao, X.; Zhang, Q. Preparation and performances of novel waterborne intumescent fire retardant coatings. Prog. Org. Coat. 2016, 95, 100–106. [Google Scholar] [CrossRef]
- Hu, X.; Zhu, X.; Sun, Z. Effect of CaAlCO3-LDHs on fire resistant properties of intumescent fireproof coatings for steel structure. Appl. Surf. Sci. 2018, 457, 164–169. [Google Scholar] [CrossRef]
- Guo, B.; Liu, Y.; Zhang, Q.; Wang, F.; Wang, Q.; Liu, Y.; Li, J.; Yu, H. Efficient flame-retardant and smoke-suppression properties of Mg-Al-layered double hydroxide-nanostructures on wood substrate. ACS Appl. Mater. Interfaces 2017, 27, 23039–23047. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Sun, Z.; Zhu, X.; Sun, Z. Montmorillonite-synergized water-based intumescent flame retardant coating for plywood. Coatings 2020, 10, 109. [Google Scholar] [CrossRef] [Green Version]
- Nasir, K.M.; Sulong, N.H.R.; Fateh, T.; Johan, M.R.; Afifi, A.M. Combustion of waterborne intumescent flame-retardant coatings with hybrid industrial filler and biofiller. J. Coat. Technol. Res. 2019, 16, 543–553. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). Standard Atmospheres for Conditioning and/or Testing -Specifications; ISO 554: 1976; ISO: Geneva, Switzerland, 1976. [Google Scholar]
- International Organization for Standardization (ISO). Reaction-to-fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement); ISO 5660-1: 2015; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- British Standards Institution (BSI). Solid Biofuels. Determination of Moisture Content. Oven Dry Method. Total Moisture. Simplified Method; BSI, BS EN 14774-2: 2009; BSI: London, UK, 2009. [Google Scholar]
- Babrauskas, V. The cone calorimeter. In SFPE Handbook of Fire Protection Engineering, 5th ed.; Hurley, M.J., Ed.; Springer: New York, NY, USA, 2016; pp. 952–980. [Google Scholar]
- Babrauskas, V.; Peacock, R.D. Heat Release Rate: The single most important variable in fire hazard. Fire Saf. J. 1992, 18, 255–272. [Google Scholar] [CrossRef]
- Babrauskas, V. Heat release rates. In SFPE Handbook of Fire Protection Engineering, 5th ed.; Hurley, M.J., Ed.; Springer: New York, NY, USA, 2016; pp. 799–904. [Google Scholar]
- Jawhari, T.; Roid, A.; Casado, J. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 1995, 33, 1561–1565. [Google Scholar] [CrossRef]
- Simon, M. New Precursor Systems for the Formation of Carbon Fibres. Master’s Thesis, The University of Lyon, Lyon, France, 2019. [Google Scholar]
Coating | Type of Fillers | |||
---|---|---|---|---|
Industrial | Biological | |||
TiO2 (wt.%) | Al(OH)3 (wt.%) | RHA (wt.%) | ES (wt.%) | |
A | 5.00 | - | 5.00 | - |
B | 5.00 | 5.00 | - | - |
C | 5.00 | - | - | 5.00 |
D | 3.40 | 3.30 | 3.30 | - |
E | 3.40 | 3.30 | - | 3.30 |
F | 2.50 | 2.50 | 2.50 | 2.50 |
Specimen | D-band Intensity | G-band Intensity | D/G Ratio of Intensities |
---|---|---|---|
W | 666.49 | 787.95 | 0.85 |
WA | 465.93 | 548.93 | 0.85 |
WB | 3524.93 | 3477.57 | 1.01 |
WC | 8610.09 | 9000.80 | 0.96 |
WD | 2491.69 | 2514.54 | 0.99 |
WE | 8124.40 | 8552.50 | 0.95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aqlibous, A.; Tretsiakova-McNally, S.; Fateh, T. Waterborne Intumescent Coatings Containing Industrial and Bio-Fillers for Fire Protection of Timber Materials. Polymers 2020, 12, 757. https://doi.org/10.3390/polym12040757
Aqlibous A, Tretsiakova-McNally S, Fateh T. Waterborne Intumescent Coatings Containing Industrial and Bio-Fillers for Fire Protection of Timber Materials. Polymers. 2020; 12(4):757. https://doi.org/10.3390/polym12040757
Chicago/Turabian StyleAqlibous, Abderrahman, Svetlana Tretsiakova-McNally, and Talal Fateh. 2020. "Waterborne Intumescent Coatings Containing Industrial and Bio-Fillers for Fire Protection of Timber Materials" Polymers 12, no. 4: 757. https://doi.org/10.3390/polym12040757