Hygroscopicity of Waterlogged Archaeological Wood from Xiaobaijiao No.1 Shipwreck Related to Its Deterioration State
Abstract
:1. Introduction
2. Materials and Methods
2.1. LM
2.2. SEM
2.3. DVS
2.4. Isotherm Models
2.5. Compositional Analysis
2.6. Hydroxyl Accessibility
3. Results and Discussion
3.1. The Deterioration State of Waterlogged Archaeological Wood
3.2. Hygroscopicity of WAW in Different Deterioration States
3.3. The Chemical Deterioration and Increased Hydroxyl Accessibility of Waterlogged Archaeological Wood
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seborg, R.M.; Inverarity, R.B. Preservation of old, waterlogged wood by treatment with polyethylene glycol. Science 1962, 136, 649–650. [Google Scholar] [CrossRef] [PubMed]
- Walsh-Korb, Z.; Avérous, L. Recent developments in the conservation of materials properties of historical wood. Prog. Mater. Sci. 2019, 102, 167–221. [Google Scholar]
- Sandström, M.; Jalilehvand, F.; Persson, I.; Gelius, U.; Frank, P. Deterioration of the seventeenth-century warship Vasa by internal formation of sulphuric acid. Nature 2002, 415, 893–897. [Google Scholar]
- Hoffmann, P.; Singh, A.; Kim, Y.S.; Wi, S.G.; Kim, I.-J.; Schmitt, U. The Bremen Cog of 1380–an electron microscopic study of its degraded wood before and after stabilization with PEG. Holzforschung 2004, 58, 211–218. [Google Scholar] [CrossRef]
- Bjurhager, I.; Halonen, H.; Lindfors, E.L.; Iversen, T.; Almkvist, G.; Gamstedt, E.K.; Berglund, L.A. State of degradation in archeological oak from the 17th century Vasa ship: Substantial strength loss correlates with reduction in (holo)cellulose molecular weight. Biomacromolecules 2012, 13, 2521–2527. [Google Scholar] [CrossRef] [PubMed]
- Macchioni, N.; Pizzo, B.; Capretti, C.; Giachi, G. How an integrated diagnostic approach can help in a correct evaluation of the state of preservation of waterlogged archaeological wooden artefacts. J. Archaeol. Sci. 2012, 39, 3255–3263. [Google Scholar] [CrossRef]
- Guo, J.; Xiao, L.; Han, L.; Wu, H.; Yang, T.; Wu, S.; Yin, Y.; Donaldson, L.A. Deterioration of the cell wall in waterlogged wooden archeological artifacts, 2400 years old. IAWA J. 2019, 1, 1–25. [Google Scholar] [CrossRef]
- Macchioni, N.; Pizzo, B.; Capretti, C. An investigation into preservation of wood from Venice foundations. Constr. Build. Mater. 2016, 111, 652–661. [Google Scholar] [CrossRef]
- Macchioni, N.; Capretti, C.; Sozzi, L.; Pizzo, B. Grading the decay of waterlogged archaeological wood according toanatomical characterisation. The case of the Fiavé site (N-E Italy). Int. Biodeter. Biodegr. 2013, 84, 54–64. [Google Scholar] [CrossRef]
- De Jong, J. Conservation techniques for old waterlogged wood from shipwrecks found in the Netherlands. Biodeterior. Invest. Tech. 1977, 113, 295–338. [Google Scholar]
- Babiński, L.; Izdebska-Mucha, D.; Waliszewska, B. Evaluation of the state of preservation of waterlogged archaeological wood based on its physical properties: Basic density vs. wood substance density. J. Archaeol. Sci. 2014, 46, 372–383. [Google Scholar] [CrossRef] [Green Version]
- Broda, M.; Mazela, B.; Krolikowska-Pataraja, K.; Siuda, J. The state of degradation of waterlogged wood from different environments. Ann. Wars. Univ. Life Sci. SGGW For. Wood. Technol. 2015, 91, 23–27. [Google Scholar]
- Irbe, I.; Bikovens, O.; Fridrihsone, V.; Dzenis, M. Impact of biodeterioration on structure and composition of waterlogged foundation piles from Riga Cathedral (1211 CE), Latvia. J. Archaeol. Sci. Rep. 2019, 23, 196–202. [Google Scholar] [CrossRef]
- Walsh, Z.; Janeček, E.R.; Hodgkinson, J.T.; Sedlmair, J.; Koutsioubas, A.; Spring, D.R.; Welch, M.; Hirschmugl, C.J.; Toprakcioglu, C.; Nitschke, J.R. Multifunctional supramolecular polymer networks as next-generation consolidants for archaeological wood conservation. Proc. Natl. Acad. Sci. USA 2014, 111, 17743–17748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skaar, C. Wood-Water Relations; Springer Science & Business Media: Heidelberg, Germany, 2012. [Google Scholar]
- Zhan, T.; Jiang, J.; Lu, J.; Zhang, Y.; Chang, J. Frequency-dependent viscoelastic properties of Chinese fir (Cunninghamia lanceolata) under hygrothermal conditions. Part 1: Moisture adsorption. Holzforschung 2019, 73, 727–736. [Google Scholar] [CrossRef] [Green Version]
- Choong, E.T.; Achmadi, S.S. Effect of extractives on moisture sorption and shrinkage in tropical woods. Wood Fiber Sci. 2007, 23, 185–196. [Google Scholar]
- Rowell, R.M.; Banks, W.B. Water Repellency and Dimensional Stability of Wood; Gen. Tech. Rep. FPL-50; US Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1985; 24p.
- Fackler, K.; Schwanninger, M. Accessibility of hydroxyl groups of brown-rot degraded spruce wood to heavy water. J. Near Infrared Spec. 2011, 19, 359–368. [Google Scholar] [CrossRef]
- Rowell, R. Protection of Wood Against Biodegradation by Chemical Modification; Ellis Horwood: Hemel Hempstead, UK, 1993. [Google Scholar]
- Thybring, E.E.; Glass, S.V.; Zelinka, S.L. Kinetics of Water Vapor Sorption in Wood Cell Walls: State of the Art and Research Needs. Forests 2019, 10, 704. [Google Scholar] [CrossRef] [Green Version]
- Esteban, L.G.; de Palacios, P.; Fernández, F.G.; Guindeo, A.; Conde, M.; Baonza, V. Sorption and thermodynamic properties of juvenile Pinus sylvestris L. wood after 103 years of submersion. Holzforschung 2008, 62, 745–751. [Google Scholar] [CrossRef]
- Esteban, L.G.; de Palacios, P.; Fernández, F.G.; Martín, J.A.; Génova, M.; Fernández-Golfín, J.I. Sorption and thermodynamic properties of buried juvenile Pinus sylvestris L. wood aged 1,170±40 BP. Wood Sci. Technol. 2009, 43, 679–690. [Google Scholar] [CrossRef]
- Singh, A.P.; Kim, Y.S.; Chavan, R.R. Relationship of wood cell wall ultrastructure to bacterial degradation of wood. IAWA J. 2019, 40, 845–870. [Google Scholar] [CrossRef]
- Rhim, J.W.; Lee, J.H. Thermodynamic Analysis of Water Vapor Sorption Isotherms and Mechanical Properties of Selected Paper-Based Food Packaging Materials. J. Food Sci. 2009, 74, E502–E511. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, J.; Yu, Y.; Wang, H. Investigating the water vapor sorption behavior of bamboo with two sorption models. J. Mater. Sci. 2018, 53, 8241–8249. [Google Scholar] [CrossRef]
- Deng, Q. The Investigation and Excavation of Xiaobaijiao No. I Shipwreck Site of Qing Dynasty in East Sea of China, in Early Navigation in the Asia-Pacific Region; Springer: Berlin/Heidelberg, Germany, 2016; pp. 241–269. [Google Scholar]
- Han, L.; Tian, X.; Zhou, H.; Yin, Y.; Guo, J. The Influences of the Anatomical Structure and Deterioration State ofWood from a Qing Dynasty Shipwreck on Wood Color after the Consolidation Treatment. J. Southwest Forst. Univ. (Nat. Sci.) 2020, 40, 1–7. [Google Scholar]
- Grönquist, P.; Frey, M.; Keplinger, T.; Burgert, I. Mesoporosity of Delignified Wood Investigated by Water Vapor Sorption. ACS Omega 2019, 4, 12425–12431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timmermann, E.O. Multilayer sorption parameters: BET or GAB values? Colloids Surf. A Physicochem. Eng. Asp. 2003, 220, 235–260. [Google Scholar] [CrossRef] [Green Version]
- Wolf, W.; Spiess, W.; Jung, G. Standardization of Isotherm Measurements (COST-Project 90 and 90 bis), in Properties of Water in Foods; Springer: Berlin/Heidelberg, Germany, 1985; pp. 661–679. [Google Scholar]
- Majka, J.; Babiński, L.; Olek, W. Sorption isotherms of waterlogged subfossil Scots pine wood impregnated with a lactitol and trehalose mixture. Holzforschung 2017, 71, 813–819. [Google Scholar] [CrossRef]
- Basu, S.; Shivhare, U.; Mujumdar, A. Models for sorption isotherms for foods: A review. Dry. Technol. 2006, 24, 917–930. [Google Scholar] [CrossRef]
- Kozłowska, A.; Kozłowski, R. Analysis of water adsorption by wood using the Guggenheim-Anderson-de Boer equation. Eur. J. Wood Prod. 2012, 70, 445–451. [Google Scholar]
- Furmaniak, S.; Terzyk, A.P.; Gauden, P.A.; Rychlicki, G. Applicability of the generalised D’Arcy and Watt model to description of water sorption on pineapple and other foodstuffs. J. Food Eng. 2007, 79, 718–723. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proced. 2008, 1617, 1–16. [Google Scholar]
- Han, L.; Wang, K.; Wang, W.; Guo, J.; Zhou, H. Nanomechanical and Topochemical Changes in Elm Wood from Ancient Timber Constructions in Relation to Natural Aging. Materials 2019, 12, 786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thybring, E.E.; Thygesen, L.G.; Burgert, I. Hydroxyl accessibility in wood cell walls as affected by drying and re-wetting procedures. Cellulose 2017, 24, 2375–2384. [Google Scholar] [CrossRef] [Green Version]
- Popescu, C.-M.; Hill, C.A.S.; Curling, S.; Ormondroyd, G.; Xie, Y. The water vapour sorption behaviour of acetylated birch wood: How acetylation affects the sorption isotherm and accessible hydroxyl content. J. Mater. Sci. 2013, 49, 2362–2371. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Broda, M.; Majka, J.; Olek, W.; Mazela, B. Dimensional stability and hygroscopic properties of waterlogged archaeological wood treated with alkoxysilanes. Int. Biodeter. Biodegr. 2018, 133, 34–41. [Google Scholar] [CrossRef]
- Brunauer, S.; Deming, L.S.; Deming, W.E.; Teller, E. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 1940, 62, 1723–1732. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Hill, C.A.; Kennedy, C. Variation in the sorption properties of historic parchment evaluated by dynamic water vapour sorption. J. Cult. 2016, 17, 87–94. [Google Scholar] [CrossRef]
- Engelund, E.T.; Thygesen, L.G.; Svensson, S.; Hill, C.A.S. A critical discussion of the physics of wood–water interactions. Wood Sci. Technol. 2012, 47, 141–161. [Google Scholar] [CrossRef] [Green Version]
- Fredriksson, M.; Thybring, E.E. Scanning or desorption isotherms? Characterising sorption hysteresis of wood. Cellulose 2018, 25, 4477–4485. [Google Scholar] [CrossRef] [Green Version]
- Olek, W.; Majka, J.; Stempin, A.; Sikora, M.; Zborowska, M. Hygroscopic properties of PEG treated archaeological wood from the rampart of the 10th century stronghold as exposed in the Archaeological Reserve Genius loci in Poznań (Poland). J. Cult. 2016, 18, 299–305. [Google Scholar] [CrossRef]
- Broda, M.; Curling, S.F.; Spear, M.J.; Hill, C.A.S. Effect of methyltrimethoxysilane impregnation on the cell wall porosity and water vapour sorption of archaeological waterlogged oak. Wood Sci. Technol. 2019, 53, 703–726. [Google Scholar] [CrossRef] [Green Version]
- Esteban, L.G.; Simón, C.; Fernández, F.G.; de Palacios, P.; Martín-Sampedro, R.; Eugenio, M.E.; Hosseinpourpia, R. Juvenile and mature wood of Abies pinsapo Boissier: Sorption and thermodynamic properties. Wood Sci. Technol. 2015, 49, 725–738. [Google Scholar] [CrossRef]
- De Oliveira, G.H.H.; Corrêa, P.C.; de Oliveira, A.P.L.R.; Reis, R.C.d.; Devilla, I.A. Application of GAB model for water desorption isotherms and thermodynamic analysis of sugar beet seeds. J. Food Process Eng. 2017, 40, e12278. [Google Scholar] [CrossRef]
- Lewicki, P.P. The applicability of the GAB model to food water sorption isotherms. Int. J. Food Sci. 1997, 32, 553–557. [Google Scholar] [CrossRef]
- Maskan, M.; Göǧüş, F. The fitting of various models to water sorption isotherms of pistachio nut paste. J. Food Eng. 1997, 33, 227–237. [Google Scholar] [CrossRef]
- Salmén, L.; Burgert, I. Cell wall features with regard to mechanical performance. A review COST Action E35 2004–2008: Wood machining—Micromechanics and fracture. Holzforschung 2009, 63, 121–129. [Google Scholar] [CrossRef]
- Pettersen, R.C. The Chemical Composition of Wood; ACS Publications: Washington, DC, USA, 1984. [Google Scholar]
- Xia, Y.; Chen, T.Y.; Wen, J.L.; Zhao, Y.L.; Qiu, J.; Sun, R.C. Multi-analysis of chemical transformations of lignin macromolecules from waterlogged archaeological wood. Int. J. Biol. Macromol. 2017, 109, 407–416. [Google Scholar] [CrossRef]
- Altgen, M.; Willems, W.; Hosseinpourpia, R.; Rautkari, L. Hydroxyl accessibility and dimensional changes of Scots pine sapwood affected by alterations in the cell wall ultrastructure during heat-treatment. Polym. Degrad. Stabil. 2018, 152, 244–252. [Google Scholar] [CrossRef]
- Hill, C.A. Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 5. [Google Scholar]
- Zelinka, S.L. Preserving ancient artifacts for the next millennia. Proc. Natl. Acad. Sci. USA 2014, 111, 17700–17701. [Google Scholar] [CrossRef] [Green Version]
- Popescu, C.-M.; Dobele, G.; Rossinskaja, G.; Dizhbite, T.; Vasile, C. Degradation of lime wood painting supports. J. Anal. Appl. Pyrol. 2007, 79, 71–77. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Hill, C.A.S. The water vapour adsorption–desorption behaviour of naturally aged Tilia cordata Mill. wood. Polym. Degrad. Stabil. 2013, 98, 1804–1813. [Google Scholar] [CrossRef]
- Rautkari, L.; Hill, C.A.; Curling, S.; Jalaludin, Z.; Ormondroyd, G. What is the role of the accessibility of wood hydroxyl groups in controlling moisture content? J. Mater. Sci. 2013, 48, 6352–6356. [Google Scholar] [CrossRef]
- Guo, X.; Liu, L.; Hu, Y.; Wu, Y. Water vapor sorption properties of TEMPO oxidized and sulfuric acid treated cellulose nanocrystal films. Carbohydr. Polym. 2018, 197, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.R.; Joshi, R.; Sharma, S.K.; Hsiao, B.S. A simple approach to prepare carboxycellulose nanofibers from untreated biomass. Biomacromolecules 2017, 18, 2333–2342. [Google Scholar] [CrossRef] [PubMed]
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Hofstetter, K.; Hinterstoisser, B.; Salmén, L. Moisture uptake in native cellulose–the roles of different hydrogen bonds: A dynamic FT-IR study using Deuterium exchange. Cellulose 2006, 13, 131–145. [Google Scholar] [CrossRef]
- Fernandes, A.N.; Thomas, L.H.; Altaner, C.M.; Callow, P.; Forsyth, V.T.; Apperley, D.C.; Kennedy, C.J.; Jarvis, M.C. Nanostructure of cellulose microfibrils in spruce wood. Proc. Natl. Acad. Sci. USA 2011, 108, 1195–1203. [Google Scholar] [CrossRef] [Green Version]
- Šturcová, A.; His, I.; Apperley, D.C.; Sugiyama, J.; Jarvis, M.C. Structural details of crystalline cellulose from higher plants. Biomacromolecules 2004, 5, 1333–1339. [Google Scholar] [CrossRef]
- Eyley, S.; Thielemans, W. Surface modification of cellulose nanocrystals. Nanoscale 2014, 6, 7764–7779. [Google Scholar] [CrossRef] [Green Version]
- Mihranyan, A.; Llagostera, A.P.; Karmhag, R.; Strømme, M.; Ek, R. Moisture sorption by cellulose powders of varying crystallinity. Int. J. Pharm. 2004, 269, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Tian, X.; Keplinger, T.; Zhou, H.; Li, R.; Svedström, K.; Burgert, I.; Yin, Y.; Guo, J. Even Visually Intact Cell Walls in Waterlogged Archaeological Wood Are Chemically Deteriorated and Mechanically Fragile: A Case of a 170 Year-Old Shipwreck. Molecules 2020, 25, 1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombini, M.P.; Lucejko, J.J.; Modugno, F.; Orlandi, M.; Tolppa, E.L.; Zoia, L. A multi-analytical study of degradation of lignin in archaeological waterlogged wood. Talanta 2009, 80, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, N.B.; Gierlinger, N.; Thygesen, L.G. Bacterial and abiotic decay in waterlogged archaeological Picea abies (L.) Karst studied by confocal Raman imaging and ATR-FTIR spectroscopy. Holzforschung 2015, 69, 103–112. [Google Scholar] [CrossRef]
Sample Name | Sampling Position |
---|---|
H1 | The 5th inner layer board of the hull |
H2 | The 4th inner layer board of the hull |
T1 | The 6th inner layer board of the hull |
T2 | The 7th inner layer frame of the hull |
Sample | Sorption Phase | GAB Model | GDW Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mm | KGAB | CGAB | R2 | SGAB | mGDW | KGDW | kGDW | w | R2 | ||
H1 | Adsorption | 4.94 | 0.79 | 15.59 | 0.999 | 187.68 | 8.70 | 4.41 | 0.86 | 0.39 | 1 |
Desorption | 8.30 | 0.66 | 10.72 | 1 | 315.34 | 6.69 | 11.32 | 0.58 | 1.97 | 1 | |
H2 | Adsorption | 5.52 | 0.80 | 18.16 | 0.999 | 209.72 | 9.74 | 4.86 | 0.87 | 0.39 | 1 |
Desorption | 9.03 | 0.68 | 12.64 | 1 | 343.08 | 9.60 | 8.23 | 0.67 | 1.04 | 1 | |
T1 | Adsorption | 4.84 | 0.80 | 11.79 | 1 | 183.88 | 8.57 | 3.71 | 0.85 | 0.45 | 1 |
Desorption | 8.20 | 0.67 | 8.01 | 1 | 311.54 | 6.62 | 8.38 | 0.61 | 1.90 | 1 | |
T2 | Adsorption | 5.65 | 0.81 | 16.63 | 0.999 | 214.66 | 11.55 | 3.64 | 0.88 | 0.31 | 1 |
Desorption | 9.29 | 0.69 | 11.96 | 0.999 | 352.96 | 9.20 | 9.12 | 0.67 | 1.22 | 0.999 |
Sample | Acid-Insoluble Lignin | Acid-Soluble Lignin | Glucose | Xylose |
---|---|---|---|---|
H1 | 46.0% | 1.0% | 45.6% | 7.4% |
H2 | 55.8% | 1.0% | 39.3% | 3.9% |
T1 | 45.0% | 0.8% | 47.6% | 6.6% |
T2 | 54.6% | 0.8% | 38.8% | 5.8% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Guo, J.; Wang, K.; Grönquist, P.; Li, R.; Tian, X.; Yin, Y. Hygroscopicity of Waterlogged Archaeological Wood from Xiaobaijiao No.1 Shipwreck Related to Its Deterioration State. Polymers 2020, 12, 834. https://doi.org/10.3390/polym12040834
Han L, Guo J, Wang K, Grönquist P, Li R, Tian X, Yin Y. Hygroscopicity of Waterlogged Archaeological Wood from Xiaobaijiao No.1 Shipwreck Related to Its Deterioration State. Polymers. 2020; 12(4):834. https://doi.org/10.3390/polym12040834
Chicago/Turabian StyleHan, Liuyang, Juan Guo, Kun Wang, Philippe Grönquist, Ren Li, Xingling Tian, and Yafang Yin. 2020. "Hygroscopicity of Waterlogged Archaeological Wood from Xiaobaijiao No.1 Shipwreck Related to Its Deterioration State" Polymers 12, no. 4: 834. https://doi.org/10.3390/polym12040834
APA StyleHan, L., Guo, J., Wang, K., Grönquist, P., Li, R., Tian, X., & Yin, Y. (2020). Hygroscopicity of Waterlogged Archaeological Wood from Xiaobaijiao No.1 Shipwreck Related to Its Deterioration State. Polymers, 12(4), 834. https://doi.org/10.3390/polym12040834