Selective Vapor Permeation Behavior of Crosslinked PAMPS Membranes
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Baker, R.W. Overview of membrane science and technology. Membr. Technol. Appl. 2004, 3, 1–14. [Google Scholar]
- Ma, H.; Burger, C.; Hsiao, B.S.; Chu, B. Highly permeable polymer membranes containing directed channels for water purification. ACS Macro Lett. 2012, 6, 723–726. [Google Scholar] [CrossRef]
- Ulbricht, M. Advanced functional polymer membranes. Polymer 2006, 47, 2217–2262. [Google Scholar] [CrossRef] [Green Version]
- Gugliuzza, A.; Drioli, E. A review on membrane engineering for innovation in wearable fabrics and protective textiles. J. Membr. Sci. 2013, 446, 350–375. [Google Scholar] [CrossRef]
- Prasad, K.; Nikzad, M.; Sbarski, I. Permeability control in polymeric systems: A review. J. Polym. Res. 2018, 25, 232. [Google Scholar] [CrossRef]
- Vanherck, K.; Koeckelberghs, G.; Vankelecom, I.F. Crosslinking polyimides for membrane applications: A review. Prog. Polym. Sci. 2013, 38, 874–896. [Google Scholar] [CrossRef]
- Rohatgi, C.V.; Dutta, N.K.; Choudhury, N.R. Separator membrane from crosslinked poly (Vinyl Alcohol) and poly (methyl vinyl ether-alt-maleic anhydride). Nanomaterials 2015, 5, 398–414. [Google Scholar] [CrossRef]
- Chen, C.; Gao, Z.; Qiu, X.; Hu, S. Enhancement of the controlled-release properties of chitosan membranes by crosslinking with suberoyl chloride. Molecules 2013, 18, 7239–7252. [Google Scholar] [CrossRef]
- Dalla Valle, C.; Zecca, M.; Rastrelli, F.; Tubaro, C.; Centomo, P. Effect of the sulfonation on the swollen state morphology of styrenic cross-linked polymers. Polymers 2020, 12, 600. [Google Scholar] [CrossRef] [Green Version]
- Croitoru, C.; Pop, M.A.; Bedo, T.; Cosnita, M.; Roata, I.C.; Hulka, I. Physically crosslinked poly (vinyl alcohol)/kappa-carrageenan hydrogels: Structure and applications. Polymers 2020, 12, 560. [Google Scholar] [CrossRef] [Green Version]
- Hunger, K.; Schmeling, N.; Jeazet, H.B.; Janiak, C.; Staudt, C.; Kleinermanns, K. Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation. Membranes 2012, 2, 727–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, C.; Angellier-Coussy, H.; Gontard, N.; Doghieri, F.; Guillard, V. How the shape of fillers affects the barrier properties of polymer/non-porous particles nanocomposites: A review. J. Membr. Sci. 2018, 556, 393–418. [Google Scholar] [CrossRef]
- Choudalakis, G.; Gotsis, A. Permeability of polymer/clay nanocomposites: A review. Eur. Polym. J. 2009, 45, 967–984. [Google Scholar] [CrossRef]
- Cong, H.; Radosz, M.; Towler, B.F.; Shen, Y. Polymer–inorganic nanocomposite membranes for gas separation. Sep. Purif. Technol. 2007, 55, 281–291. [Google Scholar] [CrossRef]
- Popa, A.M.; Hu, L.; Crespy, D.; Henry, M.; Rossi, R.M. Polyoxomolybdate-based selective membranes for chemical protection. J. Membr. Sci. 2011, 373, 196–201. [Google Scholar] [CrossRef]
- White, L.S. Barrier Membrane for Protective Clothing. U.S. Patent 5,824,405, 20 October 1998. [Google Scholar]
- Lu, X.; Nguyen, V.; Zeng, X.; Elliott, B.J.; Gin, D.L. Selective rejection of a water-soluble nerve agent stimulant using a nanoporous lyotropic liquid crystal–butyl rubber vapor barrier material: Evidence for a molecular size-discrimination mechanism. J. Membr. Sci. 2008, 318, 397–404. [Google Scholar] [CrossRef]
- Jung, K.-H.; Ji, L.; Pourdeyhimi, B.; Zhang, X. Structure–property relationships of polymer-filled nonwoven membranes for chemical protection applications. J. Membr. Sci. 2010, 361, 63–70. [Google Scholar] [CrossRef]
- Hamaya, T.; Inoue, S.; Qiao, J.; Okada, T. Novel proton-conducting polymer electrolyte membranes based on PVA/PAMPS/PEG400 blend. J. Power Sources 2006, 156, 311–314. [Google Scholar] [CrossRef]
- Qiao, J.; Okada, T.; Ono, H. High molecular weight PVA-modified PVA/PAMPS proton-conducting membranes with increased stability and their application in DMFCs. Solid State Ion. 2009, 180, 1318–1323. [Google Scholar] [CrossRef]
- Getachew, B.A.; Guo, W.; Zhong, M.; Kim, J.-H. Asymmetric hydrogel-composite membranes with improved water permeability and self-healing property. J. Membr. Sci. 2019, 578, 196–202. [Google Scholar] [CrossRef]
- Tsai, C.-E.; Lin, C.-W.; Hwang, B.-J. A novel crosslinking strategy for preparing poly (vinyl alcohol)-based proton-conducting membranes with high sulfonation. J. Power Sources 2010, 195, 2166–2173. [Google Scholar] [CrossRef]
- Schreuder-Gibson, H.L.; Gibson, P.; Hsieh, Y.-L. Transport properties of electrospun nonwoven membranes. Int. Nonwovens J. 2002. [Google Scholar] [CrossRef]
- Sundarrajan, S.; Ramakrishna, S. Fabrication of nanocomposite membranes from nanofibers and nanoparticles for protection against chemical warfare stimulants. J. Mater. Sci. 2007, 42, 8400–8407. [Google Scholar] [CrossRef]
- Ramaseshan, R.; Sundarrajan, S.; Liu, Y.; Barhate, R.; Lala, N.L.; Ramakrishna, S. Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants. Nanotechnology 2006, 17, 2947. [Google Scholar] [CrossRef]
- Lee, J.; Seo, E.; Yoo, M.; Kim, S.; Choi, J.; Jung, H.; Lee, H.W.; Lee, H.M.; Kim, H.Y.; Lee, B. Preparation of non-woven nanofiber webs for detoxification of nerve gases. Polymer 2019, 179, 121664. [Google Scholar] [CrossRef]
- Mallon, T.M. Progress in Implementing Recommendations in the National Academy of Sciences Reports: “Protecting Those Who Serve: Strategies to Protect the Health of Deployed US Forces”. Milit. Med. 2011, 176, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Krumova, M.; Lopez, D.; Benavente, R.; Mijangos, C.; Perena, J. Effect of crosslinking on the mechanical and thermal properties of poly (vinyl alcohol). Polymer 2000, 41, 9265–9272. [Google Scholar] [CrossRef]
- Duan, S.; Kai, T.; Saito, T.; Yamazaki, K.; Ikeda, K. Effect of cross-linking on the mechanical and thermal properties of poly (amidoamine) dendrimer/poly (vinyl alcohol) hybrid membranes for CO2 separation. Membranes 2014, 4, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.H.; Pourdeyhimi, B.; Zhang, X. Synthesis and characterization of polymer-filled nonwoven membranes. J. Appl. Polym. Sci. 2011, 119, 2568–2575. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.; Ren, B.; Zhang, Y.; Ma, J.; Xu, L.; Chen, Q.; Zheng, J. Super bulk and interfacial toughness of physically crosslinked double-network hydrogels. Adv. Funct. Mater. 2017, 27, 1703086. [Google Scholar] [CrossRef]
- Jung, K.H.; Pourdeyhimi, B.; Zhang, X. Selective permeation of cross-linked polyelectrolyte and polyelectrolyte-filled nonwoven membranes. J. Appl. Polym. Sci. 2012, 123, 227–233. [Google Scholar] [CrossRef]
- Liu, C.; Wilson, S.T.; Lesch, D.A. High Plasticization-Resistant Cross-Linked Polymeric Membranes for Separations. U.S. Patent 8,816,003, 26 August 2014. [Google Scholar]
- Du, N.; Cin, M.M.D.; Pinnau, I.; Nicalek, A.; Robertson, G.P.; Guiver, M.D. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation. Macromol. Rapid Commun. 2011, 32, 631–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, M.; Biswas, S.; Bandyopadhyay, S.; Bhowmick, A.K. Influence of the nanofiller type and content on permeation characteristics of multifunctional NR nanocomposites and their modeling. Polym. Adv. Technol. 2012, 23, 596–610. [Google Scholar] [CrossRef]
- Salimi-Kenari, H.; Mollaie, F.; Dashtimoghadam, E.; Imani, M.; Nyström, B. Effects of chain length of the cross-linking agent on rheological and swelling characteristics of dextran hydrogels. Carbohydr. Polym. 2018, 181, 141–149. [Google Scholar] [CrossRef]
- Caycik, S.; Jagger, R. The effect of cross-linking chain length on mechanical properties of a dough-molded poly (methylmethacrylate) resin. Dent. Mater. 1992, 8, 153–157. [Google Scholar] [CrossRef]
- Webster, C.E.; Drago, R.S.; Zerner, M.C. Molecular dimensions for adsorptives. J. Am. Chem. Soc. 1998, 120, 5509–5516. [Google Scholar] [CrossRef]
- Rivin, D.; Meermeier, G.; Schneider, N.; Vishnyakov, A.; Neimark, A. Simultaneous transport of water and organic molecules through polyelectrolyte membranes. J. Phys. Chem. B 2004, 108, 8900–8909. [Google Scholar] [CrossRef]
Sample | Young’s Modulus (MPa) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|
E10 | 0.84 ± 0.11 | 0.14 ± 0.04 | 76.1 ± 7.2 |
T10 | 0.80 ± 0.07 | 0.09 ± 0.02 | 60.1 ± 2.8 |
P10 | 0.77 ± 0.13 | 0.05 ± 0.02 | 41.0 ± 11.9 |
T10N | 0.73 ± 0.07 | 0.06 ± 0.02 | 76.7 ± 18.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, Y.J.; Kim, S.J.; Kim, Y.-J.; Jung, K.-H. Selective Vapor Permeation Behavior of Crosslinked PAMPS Membranes. Polymers 2020, 12, 987. https://doi.org/10.3390/polym12040987
Son YJ, Kim SJ, Kim Y-J, Jung K-H. Selective Vapor Permeation Behavior of Crosslinked PAMPS Membranes. Polymers. 2020; 12(4):987. https://doi.org/10.3390/polym12040987
Chicago/Turabian StyleSon, Ye Ji, So Jeong Kim, Young-Jin Kim, and Kyung-Hye Jung. 2020. "Selective Vapor Permeation Behavior of Crosslinked PAMPS Membranes" Polymers 12, no. 4: 987. https://doi.org/10.3390/polym12040987
APA StyleSon, Y. J., Kim, S. J., Kim, Y. -J., & Jung, K. -H. (2020). Selective Vapor Permeation Behavior of Crosslinked PAMPS Membranes. Polymers, 12(4), 987. https://doi.org/10.3390/polym12040987