The Effects of Adding Different HALS on the Curing Process, Film Properties and Lightfastness of Refined Oriental Lacquer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of RL
2.2. Materials
2.3. Substrates for Finishing
2.4. The formulation of HALS-Containing RL
2.5. The Measurement of Coating Properties
2.6. The Measurement of Film Properties
3. Results and Discussion
3.1. Coating Properties of HALS-Containing RL
3.2. Lightfastness of HALS-Containing RL Films
3.3. FTIR Analysis of HALS-Containing RL Films
3.4. Film Properties of HALS-Containing RL
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Watanabe, H.; Fujimoto, A.; Nishida, J.; Ohishi, T.; Takahara, A. Biobased Polymer Coating Using Catechol Derivative Urushiol. Langmuir 2016, 32, 4619–4623. [Google Scholar] [CrossRef]
- Honda, T.; Lu, R.; Sakai, R.; Ishimura, T.; Miyakoshi, T. Characterization and Comparison of Asian Lacquer Saps. Prog. Org. Coat. 2008, 61, 68–75. [Google Scholar] [CrossRef]
- Lu, R.; Harigaya, S.; Ishimura, T.; Nagase, K.; Miyakoshi, T. Development of A Fast-Drying Lacquer Based on Raw Lacquer Sap. Prog. Org. Coat. 2004, 51, 238–243. [Google Scholar] [CrossRef]
- Sakurai, T.; Takahashi, J. EPR Spectra of Type 3 Copper Centers in Rhus vernicifera Laccase and Cucumis Sativus Ascorbate Oxidase. Biochim. Biophys. Acta 1995, 1248, 143–148. [Google Scholar] [CrossRef]
- Tsujimoto, T.; Ando, N.; Oyabu, H.; Uyama, H.; Kobayashi, S. Laccase-Catalyzed Curing of Natural Phenolic Lipids and Product Properties. J. Macromol. Sci. Part A 2007, 44, 1055–1060. [Google Scholar] [CrossRef]
- Wan, Y.Y.; Lu, R.; Akiyama, K.; Okamoto, K.; Honda, T.; Du, Y.M.; Kennedy, J.F. Effects of Lacquer Polysaccharides, Glycoproteins and Isoenzymes on the Activity of Free and Immobilised Laccase from Rhus vernicifera. Int. J. Biol. Macromol. 2010, 47, 6–81. [Google Scholar] [CrossRef]
- Kim, J.Y.; Cho, J.Y.; Ma, Y.K.; Lee, Y.G.; Moon, J.H. Nonallergenic Urushiol Derivatives Inhibit the Oxidation of Unilamellar Vesicles and of Rat Plasma Induced by Various Radical Generators. Free Radic. Biol. Med. 2014, 71, 379–389. [Google Scholar] [CrossRef]
- Namiki, M. Antioxidants/Antimutagens in Food. Crit. Rev. Food Sci. Nutr. 1990, 29, 273–300. [Google Scholar] [CrossRef]
- Lu, R.; Hattori, K.; Xia, Z.; Yoshida, T.; Yang, J.; Zhang, L.; Du, Y.; Miyakoshi, T.; Uryu, T. Structural Analysis of Polysaccharides in Chinese Lacquer by NMR Spectroscopy. J. Text. Mach. Soc. Jpn. 1999, 55, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Niimura, N.; Miyakoshi, T. Structural Study of Oriental Lacquer Films During the Hardening Process. Talanta 2006, 70, 146–152. [Google Scholar] [CrossRef]
- Niimura, N.; Miyakoshi, T. Characterization of Synthesized Lacquer Analogue Films Using X-Ray Photoelectron Spectroscopy. Surf. Interface Anal. 2000, 29, 381–385. [Google Scholar] [CrossRef]
- Okahisa, Y.; Narita, C.; Yoshimura, T. Resistance of Wood Coated with Oriental Lacquer (Urushi) Against Damage Caused by Subterranean Termite. Wood Sci. 2019, 65, 41–49. [Google Scholar] [CrossRef]
- Hong, J.W.; Park, M.Y.; Kim, H.K.; Choi, J.O. UV-degradation Chemistry of Oriental Lacquer Coating Containing Hinder Amine Light Stabilizer. Bull. Korean Chem. Soc. 2000, 21, 61–64. [Google Scholar]
- Nakagoshi, K.; Yoshizumi, K. Degradation of Japanese Lacquer Under Wavelength Sensitivity of Light Radiation. Mater. Sci. Appl. 2011, 2, 1507–1515. [Google Scholar] [CrossRef] [Green Version]
- Coueignoux, C.; Rivers, S. Conservation of Photodegraded Asian Lacquer Surfaces: Four Case Studies. J. Am. Inst. Conserv. 2015, 54, 14–28. [Google Scholar] [CrossRef]
- Ogawa, T.; Inoue, A.; Osawa, S. Effect of Water on Viscoelastic Properties of Oriental Lacquer Film. J. Appl. Polym. Sci. 1998, 69, 315–321. [Google Scholar] [CrossRef]
- Obataya, E.; Furuta, Y.; Ohno, Y.; Norimoto, M.; Tomita, B. Effects of Aging and Moisture on the Dynamic Viscoelastic Properties of Oriental Lacquer (Urushi) Film. J. Appl. Polym. Sci. 2002, 83, 2288–2294. [Google Scholar] [CrossRef]
- Ma, R.Y.; Zhao, M.Y.; Mo, Y.F.; Tang, P.G.; Feng, Y.J.; Li, D.Q. HALS Intercalated Layered Double Hydroxides as An Efficient Light Stabilizer for Polypropylene. Appl. Clay Sci. 2019, 180, 9. [Google Scholar] [CrossRef]
- Gugumus, F. Current Trends in Mode of Action of Hindered Amine Light Stabilizers. Polym. Degrad. Stab. 1993, 40, 167–215. [Google Scholar] [CrossRef]
- Allen, N.S. Recent Advances in the Photo-Oxidation and Stabilization of Polymers. Chem. Soc. Rev. 1986, 15, 373–404. [Google Scholar] [CrossRef]
- Lee, J.J.; Chang, C.W.; Lu, K.T. Effect of Adding Amounts of HALS on the Lightfastness Improvement of Refined Oriental Lacquer. Forest Prod. Ind. 2018, 37, 193–203. [Google Scholar]
- Lu, R.; Honda, T.; Ishimura, T.; Miyakoshi, T. Study of A Naturally Drying Lacquer Hybridized with Organic Silane. Polym. J. 2005, 37, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Step, E.N.; Turro, N.J.; Klemchuki, P.P.; Gandei, M.E. Model Studies on the Mechanism of HALS Stabilization. Die Angew. Makromol. Chem. Appl. Macromol. Chem. Phys. 1995, 232, 65–83. [Google Scholar] [CrossRef]
- Yamashita, H.; Ohkatsu, Y. A New Antagonism Between Hindered Amine Light Stabilizers and Acidic Compounds Including Phenolic Antioxidant. Polym. Degrad. Stab. 2003, 80, 421–426. [Google Scholar] [CrossRef]
- Kumanotani, J. Urushi (Oriental Lacquer)—A Natural Aesthetic Durable and Future-Promising Coating. Prog. Org. Coat. 1995, 26, 163–195. [Google Scholar] [CrossRef]
- Kumanotani, J. Enzyme Catalyzed Durable and Authentic Oriental Lacquer: A Natural Microgelprintable Coating by Polysaccharide-Glycoprotein-Phenolic Lipid Complexes. Prog. Org. Coat. 1998, 34, 135–146. [Google Scholar] [CrossRef]
- Chang, C.W.; Lee, H.L.; Lu, K.T. Manufacture and Characteristics of Oil-Modified Refined Lacquer for Wood Coatings. Coatings 2018, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.; Yoshida, T.; Miyakoshi, T. Oriental Lacquer: A Natural Polymer. Polym. Rev. 2013, 53, 153–191. [Google Scholar] [CrossRef]
- Pospı’sˇil, J.; Nesˇpurek, S. Photostabilization of Coatings. Mechanisms and Performance. Prog. Polym. Sci. 2000, 25, 1261–1335. [Google Scholar] [CrossRef]
- Kamiya, Y.; Lu, R.; Kumamoto, T.; Honda, T.; Miyakoshi, T. Deterioration of Surface Structure of Lacquer Films Due to Ultraviolet Irradiation. Surf. Interface Anal. 2006, 38, 1311–1315. [Google Scholar] [CrossRef]
- Niimura, N.; Iijima, Y.; Miyakoshi, T. Hardening Process and Surface Structure of Lacquer Films Studied by X-Ray Photoelectron Spectroscopy. Surf. Interface Anal. 1996, 24, 237–242. [Google Scholar] [CrossRef]
- Soucek, M.D.; Khattab, T.; Wu, J. Review of Autoxidation and Driers. Prog. Org. Coat. 2012, 73, 435–454. [Google Scholar] [CrossRef]
HALS Type | pH | Viscosity (cps, 25 °C) | Curing Time (h, 25 °C, 80%RH) | |
---|---|---|---|---|
TF a | HD b | |||
RL | 3.3 | 121 | 3.5 | 6.0 |
RL-H95 | 3.6 | 155 | 3.0 | 5.5 |
RL-H60 | 4.6 | 214 | 2.0 | 4.0 |
RL-H93 | 4.6 | 198 | 2.0 | 4.0 |
RL-H90 | 4.8 | 221 | 2.5 | 4.0 |
HALS Type | After 192 h UV Exposure | ||
---|---|---|---|
ΔE* | ΔL* | ΔYI | |
RL | 42.3 | 17.9 | 102.8 |
RL-H95 | 45.9 | 21.3 | 79.0 |
RL-H60 | 19.6 | 4.6 | 78.8 |
RL-H93 | 23.5 | 6.1 | 90.0 |
RL-H90 | 19.6 | 4.6 | 78.5 |
HALS Type | 60°Gloss (%) | Ra (nm) | Adhesion (grade) | Hardness (könig, s) | Impact Resistance (300 g, cm) |
---|---|---|---|---|---|
RL | 48 ± 1 | 88.5 | 10 | 107 ± 3 | 5 |
RL-H95 | 37 ± 1 | 95.3 | 8 | 111 ± 1 | 10 |
RL-H60 | 58 ± 1 | 41.8 | 8 | 116 ± 1 | 10 |
RL-H90 | 55 ± 1 | 53.7 | 8 | 112 ± 1 | 10 |
RL-H93 | 68 ± 2 | 39.6 | 8 | 113 ± 1 | 10 |
HALS Type | Mass Retention (wt %) | Tg (°C) | Tensile Strength (MPa) | Elongation at Break (%) | Abrasion Resistance (mg/1000 circles) |
---|---|---|---|---|---|
RL | 91.4 ± 0.5 | 99 | 18.8 ± 1.0 | 15.6 ± 0.6 | 12.7 ± 1.6 |
RL-H95 | 89.4 ± 0.2 | 91 | 15.1 ± 2.2 | 6.3 ± 1.3 | 13.3 ± 2.1 |
RL-H60 | 90.4 ± 0.4 | 97 | 10.3 ± 1.2 | 3.8 ± 0.9 | 36.7 ± 0.7 |
RL-H90 | 90.3 ± 1.1 | 94 | 18.8 ± 2.7 | 7.7 ± 1.5 | 15.9 ± 1.4 |
RL-H93 | 89.7 ± 0.2 | 91 | 14.6 ± 0.6 | 5.8 ± 0.7 | 24.4 ± 3.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-W.; Lee, J.-J.; Lu, K.-T. The Effects of Adding Different HALS on the Curing Process, Film Properties and Lightfastness of Refined Oriental Lacquer. Polymers 2020, 12, 990. https://doi.org/10.3390/polym12040990
Chang C-W, Lee J-J, Lu K-T. The Effects of Adding Different HALS on the Curing Process, Film Properties and Lightfastness of Refined Oriental Lacquer. Polymers. 2020; 12(4):990. https://doi.org/10.3390/polym12040990
Chicago/Turabian StyleChang, Chia-Wei, Jia-Jhen Lee, and Kun-Tsung Lu. 2020. "The Effects of Adding Different HALS on the Curing Process, Film Properties and Lightfastness of Refined Oriental Lacquer" Polymers 12, no. 4: 990. https://doi.org/10.3390/polym12040990
APA StyleChang, C. -W., Lee, J. -J., & Lu, K. -T. (2020). The Effects of Adding Different HALS on the Curing Process, Film Properties and Lightfastness of Refined Oriental Lacquer. Polymers, 12(4), 990. https://doi.org/10.3390/polym12040990