Stable Non-Covalent Co(Salphen)-Based Polymeric Catalyst for Highly Efficient and Selective Oxidation of 2,3,6-Trimethylphenol
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of BiSalphen
2.3. Synthesis of BiCo(Salphen)
2.4. Synthesis of BiCo-BiPy1:1 CSP and BiCo-BiPy1:2 CSP
2.5. Catalytic Aerobic Oxidation of 2,3,6-Trimethylphenol
2.6. Instruments
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Evans, H.; Bishop, K.S. On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science 1922, 56, 650–651. [Google Scholar] [CrossRef] [Green Version]
- Kholdeeva, O.A.; Ivanchikova, I.D. Recent advances in transition-metal-catalyzed selective oxidation of substituted phenols and methoxyarenes with environmentally benign oxidants. Coord. Chem. Rev. 2016, 306, 302–330. [Google Scholar] [CrossRef]
- Möller, K.; Wienhöfer, G.; Westerhaus, F.; Junge, K.; Beller, M. Oxidation of 1,2,4-trimethylbenzene (TMB), 2,3,6-trimethylphenol (TMP) and 2-methylnaphthalene to 2,3,5-trimethylbenzoquinone (TMBQ) and menadione (Vitamin K3). Catal. Today. 2011, 173, 68–75. [Google Scholar] [CrossRef]
- Zhou, J.; Hua, Z.; Cui, X.; Ye, Z.; Cui, F.; Shi, J. Hierarchical mesoporous TS-1 Zeolite: A highly active and extraordinarily stable catalyst for the selective oxidation of 2,3,6-trimethylphenol. Chem. Commun. 2010, 46, 4994–4996. [Google Scholar] [CrossRef]
- Möller, K.; Wienhöfer, G.; Schröder, K.; Join, B.; Junge, K.; Beller, M. Selective iron-catalyzed oxidation of phenols and arenes with hydrogen peroxide: Synthesis of vitamin E intermediates and vitamin K3. Chem. A Eur. J. 2010, 16, 10300–10303. [Google Scholar] [CrossRef]
- Sun, H.; Harms, K.; Sundermeyer, J. Aerobic oxidation of 2,3,6-trimethylphenol to trimethyl-1,4-benzoquinone with Copper (II) chloride as catalyst in ionic liquid and structure of the active specie. J. Am. Chem. Soc. 2004, 126, 9550–9551. [Google Scholar] [CrossRef]
- Bernini, R.; Mincione, E.; Barontini, M.; Crisante, F.; Fabrizi, G.; Gambacorta, A. Dimethyl carbonate: An environmentally friendly solvent for hydrogen peroxide (H2O2)/methyltrioxorhenium (CH3ReO3, MTO) catalytic oxidations. Tetrahedron. 2007, 63, 6895–6900. [Google Scholar] [CrossRef]
- Wienhöfer, G.; Schröder, K.; Möller, K.; Junge, K.; Beller, M. A novel process for selective ruthenium-catalyzed oxidation of naphthalenes and phenols. Adv. Synth. Catal. 2010, 352, 1615–1620. [Google Scholar] [CrossRef]
- Adam, W.; Herrmann, W.A.; Lin, J.; Saha-Möller, C.R. Catalytic oxidation of phenols to p-quinones with the hydrogen peroxide and methyltrioxorhenium(VII) system. J. Org. Chem. 1994, 59, 8281–8283. [Google Scholar] [CrossRef]
- Shi, F.; Tse, M.K.; Beller, M. A novel and convenient process for the selective oxidation of naphthalenes with hydrogen peroxide. Adv. Synth. Catal. 2007, 349, 303–308. [Google Scholar] [CrossRef]
- Kholdeeva, O.A.; Trukhan, N.N.; Vanina, M.P.; Romannikov, V.N.; Parmon, V.N.; Mrowiec-Białoń, J.; Jarzębski, A.B. A new environmentally friendly method for the production of 2,3,5-trimethyl-p-benzoquinone. Catal. Today. 2002, 75, 203–209. [Google Scholar] [CrossRef]
- Ivanchikova, I.D.; Kovalev, M.K.; Mel’gunov, M.S.; Shmakov, A.N.; Kholdeeva, O.A. User-friendly synthesis of highly selective and recyclable mesoporous titanium-silicate catalysts for the clean production of substituted p-benzoquinones. Catal. Sci. Technol. 2014, 4, 200–207. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, F.; Yang, C.; Zhang, X. Synthesis and characterization of hierarchically porous HZSM-5 as catalysts for the synthesis of 2,3,5-trimethyl-1,4-benzoquinone. Aust. J. Chem. 2017, 70, 691–698. [Google Scholar] [CrossRef]
- Kholdeeva, O.A.; Ivanchikova, I.D.; Guidotti, M.; Ravasio, N.; Sgobba, M.; Barmatova, M.V. How to reach 100% selectivity in H2O2-based oxidation of 2,3,6-trimethylphenol to trimethyl-p-benzoquinone over Ti,Si-catalysts. Catal. Today. 2009, 141, 330–336. [Google Scholar] [CrossRef]
- Evtushok, V.Y.; Suboch, A.N.; Podyacheva, O.Y.; Stonkus, O.A.; Zaikovskii, V.I.; Chesalov, Y.A.; Kibis, L.S.; Kholdeeva, O.A. Highly efficient catalysts based on divanadium-substituted polyoxometalate and N-doped carbon nanotubes for selective oxidation of alkylphenols. ACS Catal. 2018, 8, 1297–1307. [Google Scholar] [CrossRef]
- Ivanchikova, I.D.; Lee, J.S.; Maksimchuk, N.V.; Shmakov, A.N.; Chesalov, Y.A.; Ayupov, A.B.; Hwang, Y.K.; Jun, C.H.; Chang, J.S.; Kholdeeva, O.A. Highly selective H2O2-based oxidation of alkylphenols to p-benzoquinones over MIL-125 metal-organic frameworks. Eur. J. Inorg. Chem. 2014, 1, 132–139. [Google Scholar] [CrossRef]
- Tsai, C.L.; Chou, B.; Cheng, S.; Lee, J.F. Synthesis of TMBQ using Cu(II)-substituted MCM-41 as the catalyst. Appl. Catal. A Gen. 2001, 208, 279–289. [Google Scholar] [CrossRef]
- Lin, Y.; Li, B.; Feng, Z.; Kim, Y.A.; Endo, M.; Su, D.S. Efficient metal-free catalytic reaction pathway for selective oxidation of substituted phenols. ACS Catal. 2015, 5, 5921–5926. [Google Scholar] [CrossRef]
- Selvaraj, M. Highly Active and green mesostructured titansilicate catalysts synthesized for selective synthesis of benzoquinones. Catal. Sci. Technol. 2014, 4, 2674–2684. [Google Scholar] [CrossRef]
- Jawale, D.V.; Gravel, E.; Geertsen, V.; Li, H.; Shah, N.; Namboothiri, I.N.N.; Doris, E. Aerobic oxidation of phenols and related compounds using carbon nanotube-gold nanohybrid catalysts. ChemCatChem 2014, 6, 719–723. [Google Scholar] [CrossRef]
- Kolesnik, I.G.; Zhizhina, E.G.; Matveev, K.I. Catalytic oxidation of 2,6-dialkylphenols to the corresponding 2,6-dialkyl-1,4-benzoquinones by molecular oxygen in the presence of P-Mo-V heteropoly acids. J. Mol. Catal. A Chem. 2000, 153, 147–154. [Google Scholar] [CrossRef]
- Roduner, E.; Kaim, W.; Sarkar, B.; Urlacher, V.B.; Pleiss, J.; Gläser, R.; Einicke, W.D.; Sprenger, G.A.; Beifuß, U.; Klemm, E.; et al. Selective catalytic oxidation of C-H bonds with molecular oxygen. ChemCatChem 2013, 5, 82–112. [Google Scholar] [CrossRef]
- Verhagen, H.; Buijsse, B.; Jansen, E.; Bueno-de-Mesquita, B. The state of antioxidant affairs. Nutr. Today 2006, 41, 244–250. [Google Scholar] [CrossRef]
- Eur. Pat. Appl. (BASF AG). EP0475272, A2. 1992. Available online: https://worldwide.espacenet.com/publicationDetails/originalDocument?CC=EP&NR=0475272A2&KC=A2&FT=D&ND=3&date=19920318&DB=&locale=en_EP (accessed on 1 May 2020).
- Aida, T.; Meijer, E.W.; Stupp, S.I. Functional supramolecular polymers. Science 2012, 335, 813–817. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.M.; Bergman, R.G.; Raymond, K.N.; Toste, F.D. Self-assembled tetrahedral hosts as supramolecular catalysts. Acc. Chem. Res. 2018, 51, 2447–2455. [Google Scholar] [CrossRef]
- Yan, X.; Wang, F.; Zheng, B.; Huang, F. Stimuli-responsive supramolecular polymeric materials. Chem. Soc. Rev. 2012, 41, 6042–6065. [Google Scholar] [CrossRef]
- Ma, X.; Tian, H. Tian, Stimuli-responsive supramolecular polymers in aqueous solution. Acc. Chem. Res. 2014, 47, 1971–1981. [Google Scholar] [CrossRef]
- Kumpfer, J.R.; Jin, J.; Rowan, S.J. Stimuli-responsive europium-containing metallo-supramolecular polymers. J. Mater. Chem. 2010, 20, 145–151. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, Y.; Gao, L.; Bai, T.; Wang, W.; Cui, Y.; Liu, W. A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv. Mater. 2015, 27, 3566–3571. [Google Scholar] [CrossRef]
- Dumur, F.; Contal, E.; Wantz, G.; Gigmes, D. Photoluminescence of zinc complexes: Easily tunable optical properties by variation of the bridge between the imido groups of Schiff base ligands. Eur. J. Inorg. Chem. 2014, 25, 4186–4198. [Google Scholar] [CrossRef]
- Luo, R.; Chen, Y.; He, Q.; Lin, X.; Xu, Q.; He, X.; Zhang, W.; Zhou, X.; Ji, H. Metallosalen-based ionic porous polymers as bifunctional catalysts for the conversion of CO2 into valuable chemicals. ChemSusChem 2017, 10, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Tang, J.; Yu, W.; Huang, Q.; Fu, Y.; Kuang, G.; Pan, C.; Yu, G. Visible light-driven C-3 functionalization of indoles over conjugated microporous polymers. ACS Catal. 2018, 8, 8084–8090. [Google Scholar] [CrossRef]
- Ko, J.H.; Kang, N.; Park, N.; Shin, H.W.; Kang, S.; Lee, S.M.; Kim, H.J.; Ahn, T.K.; Son, S.U. Hollow microporous organic networks bearing triphenylamines and anthraquinones: Diffusion pathway effect in visible light-driven oxidative coupling of benzylamines. ACS Macro Lett. 2015, 4, 669–672. [Google Scholar] [CrossRef]
- Ivanchikova, I.D.; Maksimchuk, N.V.; Maksimovskaya, R.I.; Maksimov, G.M.; Kholdeeva, O.A. Highly selective oxidation of alkylphenols to p-benzoquinones with aqueous hydrogen peroxide catalyzed by divanadium-substituted polyoxotungstates. ACS Catal. 2014, 4, 2706–2713. [Google Scholar] [CrossRef]
- Cheneviere, Y.; Caps, V.; Tuel, A. Gold-catalyzed oxidation of substituted phenols by hydrogen peroxide. Appl. Catal. A Gen. 2010, 387, 129–134. [Google Scholar] [CrossRef]
- Kholdeeva, O.A.; Ivanchikova, I.D.; Guidotti, M.; Ravasio, N. Highly efficient production of 2,3,5-trimethyl-1,4-benzoquinone using aqueous H2O2 and grafted Ti(Iv)/SiO2 catalyst. Green Chem. 2007, 9, 731–733. [Google Scholar] [CrossRef]
- Kholdeeva, O.A.; Ivanchikova, I.D.; Guidotti, M.; Pirovano, C.; Ravasio, N.; Barmatova, M.V.; Chesalov, Y.A. Highly selective oxidation of alkylphenols to benzoquinones with hydrogen peroxide over silica-supported titanium catalysts: Titanium cluster site versus titanium single site. Adv. Synth. Catal. 2009, 351, 1877–1889. [Google Scholar] [CrossRef]
- Anson, C.W.; Ghosh, S.; Hammes-Schiffer, S.; Stahl, S.S. Co(Salophen)-catalyzed aerobic oxidation of p-hydroquinone: Mechanism and implications for aerobic oxidation catalysis. J. Am. Chem. Soc. 2016, 138, 4186–4193. [Google Scholar] [CrossRef]
- Bozell, J.J.; Hames, B.R.; Dimmel, D.R. Cobalt-Schiff base complex catalyzed oxidation of para-substituted phenolics. preparation of benzoquinones. J. Org. Chem. 1995, 60, 2398–2404. [Google Scholar] [CrossRef]
Entry | Catalyst | Oxidant | T/°C | Con/% | Sel/% | Time | TOF | TON |
---|---|---|---|---|---|---|---|---|
1a | Ti,Si-catalysts (A1) [12] | H2O2 | 80 | 99 | 96 | 18 min | 4.6 min−1 | 82.8 |
2a | V2-POM/N-CNTs [15] | H2O2 | 60 | 100 | 99 | 15 min | - | - |
3a | TiSBA-15(6) [19] | H2O2 | 80 | 99 | 97 | 60 min | 3.0 min−1 | 180 |
4b | V2-POM [35] | H2O2 | 60 | 100 | 99 | 15 min | - | - |
5a | Ti-HMS [36] | H2O2 | 60 | 97 | 84 | 6 h | - | - |
6a | Au/TiO2 [36] | H2O2 | 60 | 96 | 0 | 6 h | - | - |
7a | Ti/SiO2 (A) (1.97) [37] | H2O2 | 80 | 100 | 96 | 30 min | 2.0 min−1 | 60 |
8a | Ti/SiO2 Davisil C [38] | H2O2 | 80 | 100 | 99 | 30 min | 1.8 min−1 | 54 |
9a, c | BiCo-BiPy1:1 CSP | O2 | 30 | >99 | >99 | 12 h | 1.88 h−1 | 22.5 |
10a, c | BiCo-BiPy1:2 CSP | O2 | 30 | 27 | >99 | 12 h | 0.60 h−1 | 7.2 |
11a, c | No catalyst | O2 | 30 | <1 | - | 12 h | - | - |
12a | BiCo-BiPy1:1 CSP | N2 | 30 | <1 | - | 12 h | - | - |
13a, d | BiCo-BiPy1:1 CSP | O2 | 30 | >99 | >99 | 1.0 h | 22.5 h−1 | 22.5 |
14a, c | Co(Salphen)Py1:1 | O2 | 30 | >99 | >99 | 12 h | 1.88 h−1 | 22.6 |
15b, c | Co(Salphen)Py 1:2 | O2 | 30 | 32 | >99 | 12 h | 0.71 h−1 | 8.5 |
16 b, c | BiCo(Salphen) | O2 | 30 | >99 | >99 | 12 h | 1.55 h−1 | 18.6 |
17b, c | Co(Salphen) | O2 | 30 | >99 | >99 | 12 h | 1.55 h−1 | 18.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Hu, L.; Zhang, H.; Pan, C.; Tang, J. Stable Non-Covalent Co(Salphen)-Based Polymeric Catalyst for Highly Efficient and Selective Oxidation of 2,3,6-Trimethylphenol. Polymers 2020, 12, 1076. https://doi.org/10.3390/polym12051076
Zhang W, Hu L, Zhang H, Pan C, Tang J. Stable Non-Covalent Co(Salphen)-Based Polymeric Catalyst for Highly Efficient and Selective Oxidation of 2,3,6-Trimethylphenol. Polymers. 2020; 12(5):1076. https://doi.org/10.3390/polym12051076
Chicago/Turabian StyleZhang, Weijie, Lingling Hu, He Zhang, Chunyue Pan, and Juntao Tang. 2020. "Stable Non-Covalent Co(Salphen)-Based Polymeric Catalyst for Highly Efficient and Selective Oxidation of 2,3,6-Trimethylphenol" Polymers 12, no. 5: 1076. https://doi.org/10.3390/polym12051076
APA StyleZhang, W., Hu, L., Zhang, H., Pan, C., & Tang, J. (2020). Stable Non-Covalent Co(Salphen)-Based Polymeric Catalyst for Highly Efficient and Selective Oxidation of 2,3,6-Trimethylphenol. Polymers, 12(5), 1076. https://doi.org/10.3390/polym12051076