Facile Synthesis of Phosphorus and Cobalt Co-Doped Graphitic Carbon Nitride for Fire and Smoke Suppressions of Polylactide Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Pure and Doped Graphitic Carbon Nitride
2.3. Preparation of PLA-Based Composites
2.4. Characterization
3. Results and Discussion
3.1. Characterization of Co/P-C3N4
3.2. Morphology of PLA Composites
3.3. Crystallization Behavior of PLA Composites
3.4. Thermal Stability of PLA Composites
3.5. Fire Performance of PLA Composites
3.6. Analysis of Char Residues
3.7. Mechanical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Vink, E.T.H.; Rabago, K.R.; Glassner, D.A.; Springs, B.; O’Connor, R.P.; Kolstad, J.; Gruber, P.R. The sustainability of NatureWorks (TM) polylactide polymers and Ingeo (TM) polylactide fibers(a): An update of the future. Macromol. Biosci. 2004, 4, 551–564. [Google Scholar] [CrossRef]
- Wu, W.; Han, S.T.; Venkatesh, S.; Sun, Q.J.; Peng, H.Y.; Zhou, Y.; Yeung, C.C.; Li, R.K.Y.; Roy, V.A.L. Biodegradable skin-Inspired nonvolatile resistive switching memory based on gold nanoparticles embedded alkali lignin. Org. Electron. 2018, 59, 382–388. [Google Scholar] [CrossRef]
- Tawiah, B.; Yu, B.; Wei, R.C.; Yuen, R.K.K.; Chen, W.; Xin, J.H.; Fei, B. Simultaneous fire safety enhancement and mechanical reinforcement of poly (lactic acid) biocomposites with hexaphenyl (nitrilotris(ethane-2,1-diyl))tris (phosphoramidate). J. Hazard. Mater. 2019, 380, 120856. [Google Scholar] [CrossRef]
- Mayekar, P.C.; Castro-Aguirre, E.; Auras, R.; Selke, S.; Narayan, R. Effect of nano-Clay and surfactant on the biodegradation of poly(lactic acid) Films. Polymers 2020, 12, 311. [Google Scholar] [CrossRef] [Green Version]
- Tarres, Q.; Oliver-Ortega, H.; Espinach, F.X.; Mutje, P.; Delgado-Aguilar, M.; Mendez, J.A. Determination of mean intrinsic flexural strength and coupling factor of natural fiber reinforcement in polylactic acid biocomposites. Polymers 2019, 11, 1736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, J.; Zhang, Y.; Fang, Z.P.; Wang, D.Y. Core-Shell flame retardant/graphene oxide hybrid: A self-Assembly strategy towards reducing fire hazard and improving toughness of polylactic acid. Compos. Sci. Technol. 2018, 165, 161–167. [Google Scholar] [CrossRef]
- Cheng, K.C.; Yu, C.B.; Guo, W.J.; Wang, S.F.; Chuang, T.H.; Lin, Y.H. Thermal properties and flammability of polylactide nanocomposites with aluminum trihydrate and organoclay. Carbohyd. Polym. 2012, 87, 1119–1123. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, Y.X.; Wang, W.J.; Gu, X.Y.; Li, H.F.; Li, J.H.; Sun, J. Intercalation of phosphotungstic acid into layered double hydroxides by reconstruction method and its application in intumescent flame retardant poly (lactic acid) composites. Polym. Degrad. Stabil. 2018, 147, 142–150. [Google Scholar] [CrossRef]
- Tawiah, B.; Yu, B.; Fei, B. Advances in Flame Retardant Poly(Lactic Acid). Polymers 2018, 10, 876. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, H.; Antonietti, M. Graphitic carbon nitride “reloaded”: Emerging applications beyond (photo) catalysis. Chem. Soc. Rev. 2016, 45, 2308–2326. [Google Scholar] [CrossRef] [Green Version]
- Lau, V.W.H.; Moudrakovski, I.; Botari, T.; Weinberger, S.; Mesch, M.B.; Duppel, V.; Senker, J.; Blum, V.; Lotsch, B.V. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat. Commun. 2016, 7, 12165. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yu, X.; Zhu, Q.H.; Fan, T.T.; Wu, Q.L.; Zhang, L.Z.; Li, J.H.; Fang, W.P.; Yi, X.D. Steam engraving optimization of graphitic carbon nitride with enhanced photocatalytic hydrogen evolution. Carbon 2018, 139, 189–194. [Google Scholar] [CrossRef]
- Cheng, J.S.; Hu, Z.; Lv, K.L.; Wu, X.F.; Li, Q.; Li, Y.H.; Li, X.F.; Sun, J. Drastic promoting the visible photoreactivity of layered carbon nitride by polymerization of dicyandiamide at high pressure. Appl. Catal. B Environ. 2018, 232, 330–339. [Google Scholar] [CrossRef]
- Shi, Y.Q.; Wang, L.C.; Fu, L.B.; Liu, C.; Yu, B.; Yang, F.Q.; Hu, Y. Sodium alginate-Templated synthesis of g-C3N4/carbon spheres/Cu ternary nanohybrids for fire safety application. J. Colloid Interf. Sci. 2019, 539, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.Q.; Long, Z.; Yu, B.; Zhou, K.Q.; Gui, Z.; Yuen, R.K.K.; Hu, Y. Tunable thermal, flame retardant and toxic effluent suppression properties of polystyrene based on alternating graphitic carbon nitride and multi-walled carbon nanotubes. J. Mater. Chem. A 2015, 3, 17064–17073. [Google Scholar] [CrossRef]
- Shi, Y.Q.; Liu, C.; Fu, L.B.; Yang, F.Q.; Lv, Y.C.; Yu, B. Hierarchical assembly of polystyrene/graphitic carbon nitride/reduced graphene oxide nanocomposites toward high fire safety. Compos. Part B Eng. 2019, 179, 107541. [Google Scholar] [CrossRef]
- Shi, Y.Q.; Yu, B.; Duan, L.J.; Gui, Z.; Wang, B.B.; Hu, Y.; Yuen, R.K.K. Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene. J. Hazard. Mater. 2017, 332, 87–96. [Google Scholar] [CrossRef]
- Jiang, L.B.; Yuan, X.Z.; Pan, Y.; Liang, J.; Zeng, G.M.; Wu, Z.B.; Wang, H. Doping of graphitic carbon nitride for photocatalysis: A review. Appl. Catal. B Environ. 2017, 217, 388–406. [Google Scholar] [CrossRef]
- Chen, D.D.; Liu, J.G.; Jia, Z.Z.; Fang, J.Z.; Yang, F.; Tang, Y.M.; Wu, K.; Liu, Z.; Fang, Z.Q. Efficient visible-Light-Driven hydrogen evolution and Cr(VI) reduction over porous P and Mo co-doped g-C3N4 with feeble N vacancies photocatalyst. J. Hazard. Mater. 2019, 361, 294–304. [Google Scholar] [CrossRef]
- Wang, K.Y.; Gu, G.Z.; Hu, S.Z.; Zhang, J.; Sun, X.L.; Wang, F.; Li, P.; Zhao, Y.F.; Fan, Z.P.; Zou, X. Molten salt assistant synthesis of three-Dimensional cobalt doped graphitic carbon nitride for photocatalytic N-2 fixation: Experiment and DFT simulation analysis. Chem. Eng. J. 2019, 368, 896–904. [Google Scholar] [CrossRef]
- Rao, W.H.; Liao, W.; Wang, H.; Zhao, H.B.; Wang, Y.Z. Flame-Retardant and smoke-Suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite. J. Hazard. Mater. 2018, 360, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.Q.; Yu, B.; Zheng, Y.Y.; Yang, J.; Duan, Z.P.; Hu, Y. Design of reduced graphene oxide decorated with DOPO-phosphanomidate for enhanced fire safety of epoxy resin. J. Colloid Interf. Sci. 2018, 521, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.Z.; Wang, X.L.; Wu, Y.; Li, W.; Chen, C.Y. Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin. J. Hazard. Mater. 2019, 363, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Zhang, J.; Shen, L.H.; Ma, Y.M.; Lei, W.W.; Cui, Q.L.; Zou, G.T. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl. Phys. A Mater. 2009, 94, 387–392. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Yu, D.L.; Zhou, H.W.; Tian, Y.J.; Yanagisawa, O. Turbostratic carbon nitride prepared by pyrolysis of melamine. J. Mater. Sci. 2005, 40, 2645–2647. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Ren, T.Z.; Yuan, Z.Y. Mesoporous phosphorus-Doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl. Mater. Inter. 2015, 7, 16850–16856. [Google Scholar] [CrossRef]
- Gu, S.; Xie, J.L.; Li, C.M. Hierarchically porous graphitic carbon nitride: Large-Scale facile synthesis and its application toward photocatalytic dye degradation. RSC Adv. 2014, 4, 59436–59439. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Zhang, L.X.; Liu, J.J.; Fan, X.Q.; Wang, B.Z.; Wang, M.; Ren, W.C.; Wang, J.; Li, M.L.; Shi, J.L. Brand new P-doped g-C3N4: Enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light. J. Mater. Chem. A 2015, 3, 3862–3867. [Google Scholar] [CrossRef]
- Wang, B.; Yin, X.H.; Peng, D.; Lv, R.H.; Na, B.; Liu, H.S.; Gu, X.B.; Wu, W.; Zhou, J.L.; Zhang, Y. Achieving thermally conductive low loss PVDF-based dielectric composites via surface functionalization and orientation of SiC nanowires. Express Polym. Lett. 2020, 14, 2–11. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Mori, T.; Ye, J.H.; Antonietti, M. Phosphorus-Doped carbon nitride solid: Enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 2010, 132, 6294–6295. [Google Scholar] [CrossRef]
- Lan, D.H.; Wang, H.T.; Chen, L.; Au, C.T.; Yin, S.F. Phosphorous-Modified bulk graphitic carbon nitride: Facile preparation and application as an acid-Base bifunctional and efficient catalyst for CO2 cycloaddition with epoxides. Carbon 2016, 100, 81–89. [Google Scholar] [CrossRef]
- Chen, P.W.; Li, K.; Yu, Y.X.; Zhang, W.D. Cobalt-Doped graphitic carbon nitride photocatalysts with high activity for hydrogen evolution. Appl. Surf. Sci. 2017, 392, 608–615. [Google Scholar] [CrossRef]
- Wu, W.; Cao, X.W.; Zhang, Y.J.; He, G.J. Polylactide/halloysite nanotube nanocomposites: Thermal, mechanical properties, and foam processing. J. Appl. Polym. Sci. 2013, 130, 443–452. [Google Scholar] [CrossRef]
- Wu, W.; Liu, T.; Zhang, D.L.; Sun, Q.J.; Cao, K.; Zha, J.W.; Lu, Y.; Wang, B.; Cao, X.W.; Feng, Y.H.; et al. Significantly improved dielectric properties of polylactide nanocomposites via TiO2 decorated carbon nanotubes. Compos. Part A Appl. S. 2019, 127, 105650. [Google Scholar] [CrossRef]
- Fukushima, K.; Tabuani, D.; Arena, M.; Gennari, M.; Camino, G. Effect of clay type and loading on thermal, mechanical properties and biodegradation of poly(lactic acid) nanocomposites. React. Funct. Polym. 2013, 73, 540–549. [Google Scholar] [CrossRef]
- Orue, A.; Eceiza, A.; Arbelaiz, A. The effect of sisal fiber surface treatments, plasticizer addition and annealing process on the crystallization and the thermo-Mechanical properties of poly(lactic acid) composites. Ind. Crop. Prod. 2018, 118, 321–333. [Google Scholar] [CrossRef]
- Mngomezulu, M.E.; Luyt, A.S.; John, M.J. Morphology, thermal and dynamic mechanical properties of poly (lactic acid)/expandable graphite (PLA/EG) flame retardant composites. J. Thermoplast. Compos. 2019, 32, 89–107. [Google Scholar] [CrossRef]
- Shi, Y.Q.; Liu, C.; Liu, L.; Fu, L.B.; Yu, B.; Lv, Y.C.; Yang, F.Q.; Song, P.A. Strengthening, toughing and thermally stable ultra-Thin MXene nanosheets/polypropylene nanocomposites via nanoconfinement. Chem. Eng. J. 2019, 378, 122267. [Google Scholar] [CrossRef]
- Lin, B.; Yuen, A.C.Y.; Li, A.; Zhang, Y.; Chen, T.B.Y.; Yu, B.; Lee, E.W.M.; Peng, S.H.; Yang, W.; Lu, H.D.; et al. MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions. J. Hazard. Mater. 2020, 381, 120952. [Google Scholar] [CrossRef]
- Yu, B.; Tawiah, B.; Wang, L.Q.; Yuen, A.C.Y.; Zhang, Z.C.; Shen, L.L.; Lin, B.; Fei, B.; Yang, W.; Li, A.; et al. Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer. J. Hazard. Mater. 2019, 374, 110–119. [Google Scholar] [CrossRef]
- Yu, B.; Xing, W.Y.; Guo, W.W.; Qiu, S.L.; Wang, X.; Lo, S.M.; Hu, Y. Thermal exfoliation of hexagonal boron nitride for effective enhancements on thermal stability, flame retardancy and smoke suppression of epoxy resin nanocomposites via sol-gel process. J. Mater. Chem. A 2016, 4, 7330–7340. [Google Scholar] [CrossRef]
- Cao, X.W.; Chi, X.N.; Deng, X.Q.; Liu, T.; Yu, B.; Wang, B.; Yuen, A.C.Y.; Wu, W.; Li, R.K.Y. Synergistic effect of flame retardants and graphitic carbon nitride on flame retardancy of polylactide composites. Polym. Advan. Technol. 2020. [Google Scholar] [CrossRef]
- Wu, W.; He, H.B.; Liu, T.; Wei, R.C.; Cao, X.W.; Sun, Q.J.; Venkatesh, S.; Yuen, R.K.K.; Roy, V.A.L.; Li, R.K.Y. Synergetic enhancement on flame retardancy by melamine phosphate modified lignin in rice husk ash filled P34HB biocomposites. Compos. Sci. Technol. 2018, 168, 246–254. [Google Scholar] [CrossRef]
- Ye, X.M.; Zhang, W.C.; Yang, R.J.; He, J.Y.; Li, J.R.; Zhao, F.Q. Facile synthesis of lithium containing polyhedral oligomeric phenyl silsesquioxane and its superior performance in transparency, smoke suppression and flame retardancy of epoxy resin. Compos. Sci. Technol. 2020, 189, 108004. [Google Scholar] [CrossRef]
- Yang, W.; Yang, W.J.; Tawiah, B.; Zhang, Y.; Wang, L.L.; Zhu, S.E.; Chen, T.B.Y.; Yuen, A.C.Y.; Yu, B.; Liu, Y.F.; et al. Synthesis of anhydrous manganese hypophosphite microtubes for simultaneous flame retardant and mechanical enhancement on poly(lactic acid). Compos. Sci. Technol. 2018, 164, 44–50. [Google Scholar] [CrossRef]
- Tawiah, B.; Yu, B.; Yuen, A.C.Y.; Yuen, R.K.K.; Xin, J.H.; Fei, B. Thermal, crystalline and mechanical properties of flame retarded Poly (lactic acid) with a PBO-like small molecule-Phenylphosphonic Bis (2-aminobenzothiazole). Polym. Degrad. Stabil. 2019, 163, 76–86. [Google Scholar] [CrossRef]
- Gong, K.L.; Zhou, K.Q.; Yu, B. Superior thermal and fire safety performances of epoxy-based composites with phosphorus-doped cerium oxide nanosheets. Appl. Surf. Sci. 2020, 504, 144314. [Google Scholar] [CrossRef]
- Nine, M.J.; Tran, D.N.H.; Tung, T.T.; Kabiri, S.; Losic, D. Graphene-Borate as an efficient fire retardant for cellulosic materials with multiple and synergetic modes of action. ACS Appl. Mater. Inter. 2017, 9, 10160–10168. [Google Scholar] [CrossRef]
- Nine, M.J.; Tran, D.N.H.; ElMekawy, A.; Losic, D. Interlayer growth of borates for highly adhesive graphene coatings with enhanced abrasion resistance, fire-retardant and antibacterial ability. Carbon 2017, 117, 252–262. [Google Scholar] [CrossRef]
- Yuan, Y.; Yu, B.; Shi, Y.Q.; Ma, C.; Song, L.; Hu, W.Z.; Hu, Y. Highly efficient catalysts for reducing toxic gases generation change with temperature of rigid polyurethane foam nanocomposites: A comparative investigation. Compos. Part A Appl. S. 2018, 112, 142–154. [Google Scholar] [CrossRef]
- Mu, X.W.; Pan, Y.; Ma, C.; Zhan, J.; Song, L. Novel Co3O4/covalent organic frameworks nanohybrids for conferring enhanced flame retardancy, smoke and CO suppression and thermal stability to polypropylene. Mater. Chem. Phys. 2018, 215, 20–30. [Google Scholar] [CrossRef]
- Ren, Y.J.; Zhang, Y.F.; Fang, H.M.; Ding, T.P.; Li, J.L.; Bai, S.L. Simultaneous enhancement on thermal and mechanical properties of polypropylene composites filled with graphite platelets and graphene sheets. Compos. Part A Appl. S. 2018, 112, 57–63. [Google Scholar] [CrossRef]
- Zhao, H.; She, W.; Shi, D.; Wu, W.; Zhang, Q.C.; Li, R.K.Y. Polyurethane/POSS nanocomposites for superior hydrophobicity and high ductility. Compos. Part B Eng. 2019, 177, 107441. [Google Scholar] [CrossRef]
Samples | PLA (wt %) | g-C3N4 (wt %) | Co/P-C3N4 (wt %) | LOI (%) | UL-94 Test | |||
---|---|---|---|---|---|---|---|---|
t1 (s) | t2 (s) | UL-94 Rate | Dripping | |||||
Pure PLA | 100 | -- | -- | 19.5 | >50 | -- | NR | Yes |
g-C3N4-2% | 98 | 2 | -- | 20 | 21.3 | 10.2 | V-2 | Yes |
Co/P-C3N4-2% | 98 | -- | 2 | 21 | 15.8 | 20.4 | V-2 | Yes |
Co/P-C3N4-5% | 95 | -- | 5 | 22 | 14.7 | 13.3 | V-2 | Yes |
Co/P-C3N4-10% | 90 | -- | 10 | 22.5 | 12.8 | 3.5 | V-1 | Yes |
Samples | Tg (°C) | Tcc (°C) | ΔHcc (J/g) | Tm1 (°C) | Tm2 (°C) | ΔHm (J/g) | χc (%) |
---|---|---|---|---|---|---|---|
Pure PLA | 61.5 | 106.5 | 35.5 | -- | 169.6 | 41.2 | 6.1 |
Co/P-C3N4-2% | 62.1 | 116.5 | 36.0 | 165.6 | 169.7 | 38.9 | 3.2 |
Co/P-C3N4-5% | 62.2 | 115.7 | 28.6 | 165.3 | 170.1 | 31.8 | 3.6 |
Co/P-C3N4-10% | 62.3 | 114.7 | 27.3 | 165.1 | 170.0 | 31.3 | 4.6 |
Samples | T10 (°C) | Tmax (°C) | Char Residue at 700 °C (wt %) |
---|---|---|---|
Pure PLA | 335.6 | 364.9 | 0.03 |
Co/P-C3N4-2% | 338.1 | 365.2 | 1.65 |
Co/P-C3N4-5% | 339.8 | 364.9 | 1.78 |
Co/P-C3N4-10% | 342.8 | 365.8 | 1.96 |
Samples | TTI (s) | TPHRR (s) | PHRR (kW/m2) | THR (MJ/m2) | Char Residue (wt %) | PCO2P (g/s) | PCOP (ppm) |
---|---|---|---|---|---|---|---|
Pure PLA | 63 | 158 | 394.3 | 56.4 | 0.1 | 0.465 | 174.9 |
g-C3N4-2% | 69 | 162 | 364.8 | 55.4 | 3.9 | 0.434 | 504.7 |
Co/P-C3N4-2% | 73 | 180 | 321.0 | 54.7 | 5.5 | 0.405 | 168.0 |
Co/P-C3N4-5% | 78 | 176 | 311.9 | 53.8 | 7.1 | 0.394 | 154.3 |
Co/P-C3N4-10% | 79 | 204 | 306.1 | 51.9 | 8.9 | 0.390 | 107.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Chi, X.; Deng, X.; Sun, Q.; Gong, X.; Yu, B.; Yuen, A.C.Y.; Wu, W.; Li, R.K.Y. Facile Synthesis of Phosphorus and Cobalt Co-Doped Graphitic Carbon Nitride for Fire and Smoke Suppressions of Polylactide Composite. Polymers 2020, 12, 1106. https://doi.org/10.3390/polym12051106
Cao X, Chi X, Deng X, Sun Q, Gong X, Yu B, Yuen ACY, Wu W, Li RKY. Facile Synthesis of Phosphorus and Cobalt Co-Doped Graphitic Carbon Nitride for Fire and Smoke Suppressions of Polylactide Composite. Polymers. 2020; 12(5):1106. https://doi.org/10.3390/polym12051106
Chicago/Turabian StyleCao, Xianwu, Xiaoning Chi, Xueqin Deng, Qijun Sun, Xianjing Gong, Bin Yu, Anthony Chun Yin Yuen, Wei Wu, and Robert Kwow Yiu Li. 2020. "Facile Synthesis of Phosphorus and Cobalt Co-Doped Graphitic Carbon Nitride for Fire and Smoke Suppressions of Polylactide Composite" Polymers 12, no. 5: 1106. https://doi.org/10.3390/polym12051106
APA StyleCao, X., Chi, X., Deng, X., Sun, Q., Gong, X., Yu, B., Yuen, A. C. Y., Wu, W., & Li, R. K. Y. (2020). Facile Synthesis of Phosphorus and Cobalt Co-Doped Graphitic Carbon Nitride for Fire and Smoke Suppressions of Polylactide Composite. Polymers, 12(5), 1106. https://doi.org/10.3390/polym12051106