Polymer Labelling with a Conjugated Polymer-Based Luminescence Probe for Recycling in the Circular Economy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterisation of PTMSDPA
2.2. Preparation of Labelled Polymer Sample Batches and Their Mimicked Recycling
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Plastics Europe. Plastics—The Facts 2019. An Analysis of European Plastics Production, Demand and Waste Data; PlasticsEurope Deutschland e.V.: Düsseldorf, Germany, 2019. [Google Scholar]
- Okoffo, E.D.; O’Brien, S.; O’Brien, J.W.; Tscharke, B.J.; Thomas, K.V. Wastewater Treatment Plants as a Source of Plastics in the Environment: A Review of Occurrence, Methods for Identification, Quantification and Fate. Environ. Sci. Water Res. Technol. 2019, 5, 1908–1931. [Google Scholar] [CrossRef]
- Turner, A.; Wallerstein, C.; Arnold, R. Identification, Origin and Characteristics of Bio-Bead Microplastics from Beaches in Western Europe. Sci. Total Environ. 2019, 664, 938–947. [Google Scholar] [CrossRef]
- Signoret, C.; Caro-Bretelle, A.; Lopez-Cuesta, J.; Ienny, P.; Perrin, D. MIR Spectral Characterization of Plastic to Enable Discrimination in an Industrial Recycling Context: II. Specific Case of Polyolefins. Waste Manag. 2019, 98, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Guo, X.M.; Zhu, S.C.; Wang, M.M.; Jin, G. Application Progress of Near-Infrared Spectroscopy in the Polymer Field. Spectrosc. Spectr. Anal. 2019, 39, 2114–2118. [Google Scholar]
- Junjuri, R.; Gundawar, M.K. Femtosecond Laser-Induced Breakdown Spectroscopy Studies for the Identification of Plastics. J. Anal. At. Spectrom. 2019, 34, 1683–1692. [Google Scholar] [CrossRef]
- Stefas, D.; Gyftokostas, N.; Bellou, E.; Couris, S. Laser-Induced Breakdown Spectroscopy Assisted by Machine Learning for Plastics/Polymers Identification. Atoms 2019, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Boeykens, S.; Vazquez, C.; Temprano, N. Macromolecules by Total Reflection X-Ray Fluorescence: Marking Techniques. Spectroc. Acta Part B At. Spectr. 2003, 58, 2169–2175. [Google Scholar] [CrossRef]
- Grof, Y.; Kislev, T.; Yoran, N.; Alon, H. A Method and a System for XRF Marking and Reading XRF Marks of Electronic Systems. U.S. Patent 10,607,049, 31 March 2020. [Google Scholar]
- Gao, G.; Busko, D.; Joseph, R.; Turshatov, A.; Howard, I.A.; Richards, B.S. High Quantum Yield Single-Band Green Upconversion in La2O3:Yb3+, Ho3+ Microcrystals for Anticounterfeiting and Plastic Recycling. Part. Part. Syst. Charact. 2019, 36, 1800462. [Google Scholar] [CrossRef]
- Gao, G.; Turshatov, A.; Howard, I.A.; Busko, D.; Joseph, R.; Hudry, D.; Richards, B.S. Up-Conversion Fluorescent Labels for Plastic Recycling: A Review. Adv. Sustain. Syst. 2017, 1, 1600033. [Google Scholar] [CrossRef] [Green Version]
- Gai, S.; Li, C.; Yang, P.; Lin, J. Recent Progress in Rare Earth Micro/Nanocrystals: Soft Chemical Synthesis, Luminescent Properties, and Biomedical Applications. Chem. Rev. 2014, 114, 2343–2389. [Google Scholar] [CrossRef]
- Yang, J.; Ho, Y.; Chan, Y. Ultrabright Fluorescent Polymer Dots with Thermochromic Characteristics for Full-Color Security Marking. ACS Appl. Mater. Interfaces 2019, 11, 29341–29349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massardier, V.; Louizi, M.; Maris, E.; Froelich, D. High Shear Dispersion of Tracers in Polyolefins for Improving their Detection. Polim. Cienc. E Tecnol. 2015, 25, 466–476. [Google Scholar] [CrossRef] [Green Version]
- Maris, E.; Aoussat, A.; Naffrechoux, E.; Froelich, D. Polymer Tracer Detection Systems with UV Fluorescence Spectrometry to Improve Product Recyclability. Miner. Eng. 2012, 29, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Lambert, C.; Hachin, J. Method for Authentication by Chemical Marking orTracing of an Object Or a Substance. U.S. Patent 7,605,372, 20 October 2009. [Google Scholar]
- Ahmad, S. A New Technology for Automatic Identification and Sorting of Plastics for Recycling. Environ. Technol. 2004, 25, 1143–1149. [Google Scholar] [CrossRef]
- Ahmad, S. Marking of Products with Fluorescent Tracers in Binary Combinations for Automatic Identification and Sorting. Assem. Autom. 2000, 20, 58–64. [Google Scholar] [CrossRef]
- Corbett, E.C.; Frey, J.G.; Grose, R.I.; Hendra, P.J.; Taylorbrown, T. An Investigation into the Applicability of Luminescent Tagging to Polymer Recovery. Plast. Rubber Compos. Process. Appl. 1994, 21, 5–11. [Google Scholar]
- Luttermann, K.; Claussen, U.; El Sayed, A.; Riess, R. Process for Identifying Plastics by Addition of Fluorescent Dye. U.S. Patent 5,201,921, 13 April 1993. [Google Scholar]
- Tsuchihara, K.; Masuda, T.; Higashimura, T. Polymerization of Silicon-Containing Diphenylacetylenes and High Gas-Permeability of the Product Polymers. Macromolecules 1992, 25, 5816–5820. [Google Scholar] [CrossRef]
- Duchoslavova, Z.; Sivkova, R.; Hankova, V.; Sedlacek, J.; Svoboda, J.; Vohlidal, J.; Zednik, J. Synthesis and Spectral Properties of Novel Poly(Disubstituted Acetylene)S. Macromol. Chem. Phys. 2011, 212, 1802–1814. [Google Scholar] [CrossRef]
- Kwak, G.; Aoki, T.; Toy, L.; Freeman, B.; Masuda, T. Synthesis, Characterization, and Oxygen Permeability of Homo- and Copolymers from P-[Tris(Trimethylsilyl)Silyl]-Phenylacetylene. Polym. Bull. 2000, 45, 215–221. [Google Scholar] [CrossRef]
- Toy, L.; Nagai, K.; Freeman, B.; Pinnau, I.; He, Z.; Masuda, T.; Teraguchi, M.; Yampolskii, Y. Pure-Gas and Vapor Permeation and Sorption Properties of Poly[1-Phenyl-2-[P-(Trimethylsilyl)Phenyl]Acetylene] (PTMSDPA). Macromolecules 2000, 33, 2516–2524. [Google Scholar] [CrossRef]
- Tsuchihara, K.; Masuda, T.; Higashimura, T. Tractable Silicon-Containing Poly(Diphenylacetylenes)—Their Synthesis and High Gas-Permeability. J. Am. Chem. Soc. 1991, 113, 8548–8549. [Google Scholar] [CrossRef]
- Kwak, G.; Lee, W.; Jeong, H.; Sakaguchi, T.; Fujiki, M. Swelling-Induced Emission Enhancement in Substituted Acetylene Polymer Film with Large Fractional Free Volume: Fluorescence Response to Organic Solvent Stimuli. Macromolecules 2009, 42, 20–24. [Google Scholar] [CrossRef]
- Kwak, G.; Fujiki, M.; Sakaguchi, T.; Masuda, T. Mono- and Multicolor FL Image Patterning Based on Highly Luminous Diphenylacetylene Polymer Derivative by Facile Photobleaching. Macromolecules 2006, 39, 319–323. [Google Scholar] [CrossRef]
- Taddei, P.; Tinti, A.; Fini, G. Vibrational Spectroscopy of Polymeric Biomaterials. J. Raman Spectrosc. 2001, 32, 619–629. [Google Scholar] [CrossRef]
- Jia, W.; Luo, Y.; Yu, J.; Liu, B.; Hu, M.; Chai, L.; Wang, C. Effects of High-Repetition-Rate Femtosecond Laser Micromachining on the Physical and Chemical Properties of Polylactide (PLA). Opt. Express 2015, 23, 26932–26939. [Google Scholar] [CrossRef]
- Dybal, J.; Krimm, S. Normal-Mode Analysis of Infrared and Raman-Spectra of Crystalline Isotactic Poly(Methyl Methacrylate). Macromolecules 1990, 23, 1301–1308. [Google Scholar] [CrossRef]
- Neppel, A.; Butler, I.S. Raman-Spectra of Fully Deuteriated Syndiotactic and Isotactic Poly(Methyl Methacrylate). J. Raman Spectrosc. 1984, 15, 257–263. [Google Scholar] [CrossRef]
- Kwak, G.; Fukao, S.; Fujiki, M.; Sakaguchi, T.; Masuda, T. Nanoporous, Honeycomb-Structured Network Fibers Spun from Semiflexible, Ultrahigh Molecular Weight, Disubstituted Aromatic Polyacetylenes: Superhierarchical Structure and Unique Optical Anisotropy. Chem. Mater. 2006, 18, 5537–5542. [Google Scholar] [CrossRef]
- Ashby, M.F.; Shercliff, H.; Cebon, D. Materials: Engineering, Science, Processing and Design, 4th ed.; Elsevier: Waltham, MA, USA, 2019. [Google Scholar]
- Osswald, T.A.; Baur, E.; Brinkmann, S.; Oberbach, K.; Schmachtenberg, E. MATERIAL PROPERTY TABLES. In International Plastics Handbook; Anonymous; Carl Hanser Verlag GmbH & Co. KG: Munich, Germany, 2006; pp. 717–902. [Google Scholar]
- Badia, J.D.; Monreal, L.; Saenz de Juano-Arbona, V.; Ribes-Greus, A. Dielectric Spectroscopy of Recycled Polylactide. Polym. Degrad. Stab. 2014, 107, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Zenkiewicz, M.; Zuk, T.; Markiewicz, E. Triboelectric Series and Electrostatic Separation of some Biopolymers. Polym. Test. 2015, 42, 192–198. [Google Scholar] [CrossRef]
- Ohki, Y.; Hirai, N. Dielectric Properties of Biodegradable Polymers. In Proceedings of the 2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Kansas City, MO, USA, 15–18 October 2006; pp. 668–671. [Google Scholar]
- Fakirov, S.; Krasteva, B. On the Glass Transition Temperature of Polyethylene as Revealed by Microhardness Measurements. J. Macromol. Sci. Phys. 2000, 39, 297–301. [Google Scholar] [CrossRef]
- Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry: Fourth Edition; Wiley-VCH: Weinheim, Germany, 2010; ISBN 9783527324736. [Google Scholar]
- Spano, F.C.; Silva, C. H- and J-Aggregate Behavior in Polymeric Semiconductors. Annu. Rev. Phys. Chem. 2014, 65, 477–500. [Google Scholar] [CrossRef]
- Urbanek, P.; Kuritka, I.; Danis, S.; Touskova, J.; Tousek, J. Thickness threshold of structural ordering in thin MEH-PPV films. Polymer 2014, 16, 4050–4056. [Google Scholar] [CrossRef]
Polymer Matrix | Processing Temperature (°C) | PL Emission Maximum for Materials Prepared at Processing Cycle, λem,max (nm) | ||
---|---|---|---|---|
1st (Primary Processing) | 2nd (First Reprocessing) | 3rd (Second Reprocessing) | ||
LDPE | 140 | 528 | 512 | 505 |
PMMA | 170 | 526 | 525 | 522 |
PP | 190 | 527 | 524 | 517 |
PLA | 230 | 510 | 480 | 475 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuřitka, I.; Sedlařík, V.; Harea, D.; Harea, E.; Urbánek, P.; Šloufová, I.; Coufal, R.; Zedník, J. Polymer Labelling with a Conjugated Polymer-Based Luminescence Probe for Recycling in the Circular Economy. Polymers 2020, 12, 1226. https://doi.org/10.3390/polym12061226
Kuřitka I, Sedlařík V, Harea D, Harea E, Urbánek P, Šloufová I, Coufal R, Zedník J. Polymer Labelling with a Conjugated Polymer-Based Luminescence Probe for Recycling in the Circular Economy. Polymers. 2020; 12(6):1226. https://doi.org/10.3390/polym12061226
Chicago/Turabian StyleKuřitka, Ivo, Vladimír Sedlařík, Diana Harea, Evghenii Harea, Pavel Urbánek, Ivana Šloufová, Radek Coufal, and Jiří Zedník. 2020. "Polymer Labelling with a Conjugated Polymer-Based Luminescence Probe for Recycling in the Circular Economy" Polymers 12, no. 6: 1226. https://doi.org/10.3390/polym12061226
APA StyleKuřitka, I., Sedlařík, V., Harea, D., Harea, E., Urbánek, P., Šloufová, I., Coufal, R., & Zedník, J. (2020). Polymer Labelling with a Conjugated Polymer-Based Luminescence Probe for Recycling in the Circular Economy. Polymers, 12(6), 1226. https://doi.org/10.3390/polym12061226