Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio Filler
Abstract
:1. Introduction
2. Model and Methodology
2.1. Force Field
2.2. Sample Preparation and Simulation Details
3. Results and Discussion
3.1. Thermal Conductivity Comparasion
3.2. Phonons Spectra and Morphology Analysis for Woven Polymers
3.3. Phonons Spectra and Morphology Analysis for PE Nanocomposites
3.4. Temperature-Dependent Thermal Conductivity of PE-CNT
3.5. Electron–Phonon Coupling and Elecrtical Field
3.6. Mechanical Modulus Comparison
3.7. Theoretical Model Prediction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mark, J.E. Physical Properties of Polymers Handbook; Springer: Berlin/Heidelberg, Germany, 2007; Volume 1076. [Google Scholar]
- Chen, H.; Ginzburg, V.V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications. Prog. Polym. Sci. 2016, 59, 41–85. [Google Scholar] [CrossRef]
- Lopez, J.; Mackanic, D.G.; Cui, Y.; Bao, Z. Designing Polymers for Advanced Battery Chemistries. Nat. Rev. Mater. 2019, 4, 312–330. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Qian, X.; Yang, R. Thermal Conductivity of Polymers and Polymer Nanocomposites. Mater. Sci. Eng. R 2018, 132, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Dong, L.; Xi, Q.; Li, Y.; Xu, X.; Zhou, J.; Nakayama, T.; Liang, Z.; Chen, D.; Li, B. Dimensional Crossover of Heat Conduction in Amorphous Polyimide Nanofibers. Natl. Sci. Rev. 2018, 5, 500–506. [Google Scholar]
- Han, Z.; Fina, A. Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review. Prog. Polym. Sci. 2011, 36, 914–944. [Google Scholar] [CrossRef] [Green Version]
- Henry, A.; Chen, G. High Thermal Conductivity of Single Polyethylene Chains Using Molecular Dynamics Simulations. Phys. Rev. Lett. 2008, 101, 235502. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Kaviany, M.; Huang, B. Phonon Coupling and Transport in Individual Polyethylene Chains: A Comparison Study with the Bulk Crystal. Nanoscale 2017, 9, 18022–18031. [Google Scholar] [CrossRef]
- Shen, S.; Henry, A.; Tong, J.; Zheng, R.; Chen, G. Polyethylene Nanofibres with Very High Thermal Conductivities. Nat. Nanotechnol. 2010, 5, 251. [Google Scholar] [CrossRef]
- Shrestha, R.; Li, P.; Chatterjee, B.; Zheng, T.F.; Wu, X.; Liu, Z.; Luo, T.; Choi, S.; Hippalgaonkar, K.; de Boer, M.P.; et al. Crystalline Polymer Nanofibers with Ultra-High Strength and Thermal Conductivity. Nat. Commun. 2018, 9, 1664. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, R.; Luan, Y.; Shin, S.; Zhang, T.; Luo, X.; Lundh, J.S.; Gong, W.; Bockstaller, M.R.; Choi, S.; Luo, T.; et al. High-contrast and reversible polymer thermal regulator by structural phase transition. Sci. Adv. 2019, 5, eaax3777. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yin, J.; Yu, W.; Wang, M.; Xie, H. Great Thermal Conductivity Enhancement of Silicone Composite with Ultra-Long Copper Nanowires. Nanoscale Res. Lett. 2017, 12, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Wang, X.; Zhou, J.; Song, B.; Jiang, Z.; Lee, E.M.Y.; Huberman, S.; Gleason, K.K.; Chen, G. Molecular Engineered Conjugated Polymer with High Thermal Conductivity. Sci. Adv. 2018, 4, eaar3031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Kraemer, D.; Song, B.; Jiang, Z.; Zhou, J.; Loomis, J.; Wang, J.; Li, M.; Ghasemi, H.; Huang, X.; et al. Nanostructured Polymer Films with Metal-Like Thermal Conductivity. Nat. Commun. 2019, 10, 1771. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X.; Yang, L.; Zhang, Q.; Fitzgerald, M.L.; Ueda, A.; Chen, Y.; Mu, R.; Li, D.; Bellan, L.M. Thermal Transport in Electrospun Vinyl Polymer Nanofibers: Effects of Molecular Weight and Side Groups. Soft Matter 2018, 14, 9534–9541. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, Q.; Mayo, A.; Ni, Z.; Yi, H.; Chen, Y.; Mu, R.; Bellan, L.M.; Li, D. Thermal Conductivity of Electrospun Polyethylene Nanofibers. Nanoscale 2015, 7, 16899–16908. [Google Scholar] [CrossRef]
- Cao, B.-Y.; Li, Y.-W.; Kong, J.; Chen, H.; Xu, Y.; Yung, K.-L.; Cai, A. High Thermal Conductivity of Polyethylene Nanowire Arrays Fabricated by an Improved Nanoporous Template Wetting Technique. Polymer 2011, 52, 1711–1715. [Google Scholar] [CrossRef]
- Robbins, A.B.; Drakopoulos, S.X.; Martin-Fabiani, I.; Ronca, S.; Minnich, A.J. Ballistic Thermal Phonons Traversing Nanocrystalline Domains in Oriented Polyethylene. Proc. Natl. Acad. Sci. USA 2019, 116, 17163. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Mao, P.; Liang, Y.; He, Y.; Liu, W.; Liu, Z. Modulating Thermal Transport in Polymers and Interfaces: Theories, Simulations, and Experiments. ES Energy Environ. 2019, 5, 37–55. [Google Scholar] [CrossRef]
- Bao, H.; Chen, J.; Gu, X.; Cao, B. A Review of Simulation Methods in Micro/Nanoscale Heat Conduction. ES Energy Environ. 2018, 1, 16–55. [Google Scholar] [CrossRef] [Green Version]
- Tu, R.; Liao, Q.; Zeng, L.; Liu, Z.; Liu, W. Impact of Torsion and Stretching on the Thermal Conductivity of Polyethylene Strands. Appl. Phys. Lett. 2017, 110, 101905. [Google Scholar] [CrossRef] [Green Version]
- Liao, Q.; Liu, Z.; Liu, W.; Deng, C.; Yang, N. Extremely High Thermal Conductivity of Aligned Carbon Nanotube-Polyethylene Composites. Sci. Rep. 2015, 5, 16543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Q.; Zeng, L.; Liu, Z.; Liu, W. Tailoring Thermal Conductivity of Single-Stranded Carbon-Chain Polymers through Atomic Mass Modification. Sci. Rep. 2016, 6, 34999. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Tian, Z. Effects of Polymer Topology and Morphology on Thermal Transport: A Molecular Dynamics Study of Bottlebrush Polymers. Appl. Phys. Lett. 2017, 110, 091903. [Google Scholar] [CrossRef]
- Ma, H.; Tian, Z. Chain Rotation Significantly Reduces Thermal Conductivity of Single-Chain Polymers. J. Mater. Res. 2019, 34, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Ma, Y.; Tian, Z. Simple Theoretical Model for Thermal Conductivity of Crystalline Polymers. ACS Appl. Polym. Mater. 2019, 1, 2566–2570. [Google Scholar] [CrossRef]
- Ruscher, C.; Rottler, J.; Boott, C.E.; MacLachlan, M.J.; Mukherji, D. Elasticity and thermal transport of commodity plastics. Phys. Rev. Mater. 2019, 3, 125604. [Google Scholar] [CrossRef] [Green Version]
- An, M.; Demir, B.; Wan, X.; Meng, H.; Yang, N.; Walsh, T. Predictions of Thermo-Mechanical Properties of Cross-Linked Polyacrylamide Hydrogels Using Molecular Simulations. Adv. Theory Simul. 2019, 2, 1800153. [Google Scholar] [CrossRef]
- Zhou, T.; Li, Z.; Cheng, Y.; Ni, Y.; Volz, S.; Donadio, D.; Xiong, S.; Zhang, W.; Zhang, X. Thermal transport in amorphous small organic materials: A mechanistic study. Phys. Chem. Chem. Phys. 2020, 22, 3058–3065. [Google Scholar] [CrossRef]
- Zhang, T.; Luo, T. Role of Chain Morphology and Stiffness in Thermal Conductivity of Amorphous Polymers. J. Phys. Chem. B 2016, 120, 803–812. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, X.; Luo, T. Polymer Nanofibers with Outstanding Thermal Conductivity and Thermal Stability: Fundamental Linkage between Molecular Characteristics and Macroscopic Thermal Properties. J. Phys. Chem. C 2014, 118, 21148–21159. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Zhang, T.; Luo, T. Chain Conformation-Dependent Thermal Conductivity of Amorphous Polymer Blends: The Impact of Inter- and Intra-Chain Interactions. Phys. Chem. Chem. Phys. 2016, 18, 32146–32154. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Luo, T. Chain Length Effect on Thermal Transport in Amorphous Polymers and a Structure–Thermal Conductivity Relation. Phys. Chem. Chem. Phys. 2019, 21, 15523–15530. [Google Scholar] [CrossRef] [PubMed]
- Shulumba, N.; Hellman, O.; Minnich, A.J. Lattice Thermal Conductivity of Polyethylene Molecular Crystals from First-Principles Including Nuclear Quantum Effects. Phys. Rev. Lett. 2017, 119, 185901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, P.; Shulumba, N.; Minnich, A.J. Thermal Transport and Phonon Focusing in Complex Molecular Crystals: Ab Initio Study of Polythiophene. Phys. Rev. B 2019, 100, 094306. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yu, X.; Bao, H.; Yang, N. High Thermal Conductivity of Bulk Epoxy Resin by Bottom-up Parallel-Linking and Strain: A Molecular Dynamics Study. J. Phys. Chem. C 2018, 122, 13140–13147. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Li, R.; Shiga, T.; Feng, L.; An, M.; Zhang, L.; Shiomi, J.; Yang, N. Hybrid Thermal Transport Characteristics of Doped Organic Semiconductor Poly(3,4-Ethylenedioxythiophene):Tosylate. J. Phys. Chem. C 2019, 123, 26735–26741. [Google Scholar] [CrossRef]
- Wan, X.; Feng, W.; Wang, Y.; Wang, H.; Zhang, X.; Deng, C.; Yang, N. Materials Discovery and Properties Prediction in Thermal Transport via Materials Informatics: A Mini Review. Nano Lett. 2019, 19, 3387–3395. [Google Scholar] [CrossRef] [Green Version]
- Dauber-Osguthorpe, P.; Roberts, V.A.; Osguthorpe, D.J.; Wolff, J.; Genest, M.; Hagler, A.T. Structure and Energetics of Ligand Binding to Proteins: Escherichia Coli Dihydrofolate Reductase-Trimethoprim, a Drug-Receptor System. Protein Struct. Funct. Bioinform. 1988, 4, 31–47. [Google Scholar] [CrossRef]
- Maple, J.R.; Dinur, U.; Hagler, A.T. Derivation of Force Fields for Molecular Mechanics and Dynamics from Ab Initio Energy Surfaces. Proc. Natl. Acad. Sci. USA 1988, 85, 5350–5354. [Google Scholar] [CrossRef] [Green Version]
- Kınacı, A.; Haskins, J.B.; Sevik, C.; Çağın, T. Thermal Conductivity of Bn-C Nanostructures. Phys. Rev. B 2012, 86, 115410. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ruan, X.; Roy, A.K. Two-Temperature Nonequilibrium Molecular Dynamics Simulation of Thermal Transport across Metal-Nonmetal Interfaces. Phys. Rev. B 2012, 85, 205311. [Google Scholar] [CrossRef]
- Foiles, S.M.; Baskes, M.I.; Daw, M.S. Embedded-Atom-Method Functions for the Fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys. Phys. Rev. B 1986, 33, 7983–7991. [Google Scholar] [CrossRef] [PubMed]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Nosé, S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Kubo, R. The Fluctuation-Dissipation Theorem. Rep. Prog. Phys. 1966, 29, 255. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xiong, S.; Sievers, C.; Hu, Y.; Fan, Z.; Wei, N.; Bao, H.; Chen, S.; Donadio, D.; Ala-Nissila, T. Influence of Thermostatting on Nonequilibrium Molecular Dynamics Simulations of Heat Conduction in Solids. J. Chem. Phys. 2019, 151, 234105. [Google Scholar] [CrossRef] [Green Version]
- Coleman, S.P.; Spearot, D.E.; Capolungo, L. Virtual diffraction analysis of Ni [0 1 0] symmetric tilt grain boundaries. Modell. Simul. Mater. Sci. Eng. 2013, 21, 055020. [Google Scholar] [CrossRef]
- Dickey, J.M.; Paskin, A. Computer Simulation of the Lattice Dynamics of Solids. Phys. Rev. 1969, 188, 1407–1418. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, G.; Li, B. Phonon coherent resonance and its effect on thermal transport in core-shell nanowires. J. Chem. Phys. 2011, 135, 104508. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Park, W.; Wang, Y.; Chen, Y.P.; Ruan, X. Reducing Interfacial Thermal Resistance between Metal and Dielectric Materials by a Metal Interlayer. J. Appl. Phys. 2019, 125, 045302. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.W.; Fennimore, A.M.; Afanasiev, A.; Okawa, D.; Ikuno, T.; Garcia, H.; Li, D.; Majumdar, A.; Zettl, A. Isotope Effect on the Thermal Conductivity of Boron Nitride Nanotubes. Phys. Rev. Lett. 2006, 97, 085901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berber, S.; Kwon, Y.-K.; Tománek, D. Unusually High Thermal Conductivity of Carbon Nanotubes. Phys. Rev. Lett. 2000, 84, 4613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shenogin, S.; Bodapati, A.; Keblinski, P.; McGaughey, A.J.H. Predicting the Thermal Conductivity of Inorganic and Polymeric Glasses: The Role of Anharmonicity. J. Appl. Phys. 2009, 105, 034906. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Hu, M.; Tang, D. Thermal Rectification at Silicon/Horizontally Aligned Carbon Nanotube Interfaces. J. Appl. Phys. 2013, 113, 194307. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, Y.; Ruan, X. Metal/Dielectric Thermal Interfacial Transport Considering Cross-Interface Electron-Phonon Coupling: Theory, Two-Temperature Molecular Dynamics, and Thermal Circuit. Phys. Rev. B 2016, 93, 064302. [Google Scholar] [CrossRef] [Green Version]
- Salvetat, J.-P.; Briggs, G.A.D.; Bonard, J.-M.; Bacsa, R.R.; Kulik, A.J.; Stöckli, T.; Burnham, N.A.; Forró, L. Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes. Phys. Rev. Lett. 1999, 82, 944. [Google Scholar] [CrossRef] [Green Version]
- Suryavanshi, A.P.; Yu, M.-F.; Wen, J.; Tang, C.; Bando, Y. Elastic Modulus and Resonance Behavior of Boron Nitride Nanotubes. Appl. Phys. Lett. 2004, 84, 2527–2529. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Cai, Z.; Wang, Y.; Zhao, L.; Zhai, C. Tailored Morphology and Highly Enhanced Phonon Transport in Polymer Fibers: A Multiscale Computational Framework. NPJ Comput. Mater. 2019, 5, 1–12. [Google Scholar] [CrossRef]
- Progelhof, R.C.; Throne, J.L.; Ruetsch, R.R. Methods for Predicting the Thermal Conductivity of Composite Systems: A Review. Polym. Eng. Sci. 1976, 16, 615–625. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Liang, Y.; Liu, B.; Liu, W.; Liu, Z. Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio Filler. Polymers 2020, 12, 1255. https://doi.org/10.3390/polym12061255
Zhang B, Liang Y, Liu B, Liu W, Liu Z. Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio Filler. Polymers. 2020; 12(6):1255. https://doi.org/10.3390/polym12061255
Chicago/Turabian StyleZhang, Bo, Yunmin Liang, Biwei Liu, Wei Liu, and Zhichun Liu. 2020. "Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio Filler" Polymers 12, no. 6: 1255. https://doi.org/10.3390/polym12061255
APA StyleZhang, B., Liang, Y., Liu, B., Liu, W., & Liu, Z. (2020). Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length–Diameter Ratio Filler. Polymers, 12(6), 1255. https://doi.org/10.3390/polym12061255