Synthesis and Application of New Amphiphilic Asphaltene Ionic Liquid Polymers to Demulsify Arabic Heavy Petroleum Crude Oil Emulsions
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Techniques
2.2.1. Preparation of Asphaltenes Carboxylic (ACA) and Acid Chlorides (As-COCl)
2.2.2. Preparation of Tetradecyl Pyridinium Bromide Ethoxylate
2.2.3. Synthesis of Amphiphilic Asphaltenes Ionic Liquid Polymers
2.3. Characterization
2.4. Application of Asphaltenes Ionic Liquids (As-ILs) as Demulsifier
3. Results and Discussion
3.1. Characterization of Amphiphilic Asphaltene ILs
3.2. Surface Activity of Amphiphilic Asphaltene PIL
3.3. Application of the Prepared AIL and AIL-2 as Demulsifier for Petroleum Crude Oil Emulsions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loh, W.; Mohamed, R.S.; Santos, R.G. Crude Oil Asphaltenes: Colloidal Aspects. In Encyclopedia of Surface and Colloid Science; Somasundaram, P., Ed.; Taylor & Francis: New York, NY, USA, 2007; Volume 1, pp. 1–18. [Google Scholar]
- Speight, J.G. The Chemistry and Technology of Petroleum, 2nd ed.; Marcel Dekker, Inc.: New York, NY, USA, 1991; Chapter 11; pp. 350–373. [Google Scholar]
- He, L.; Lin, F.; Li, X.; Sui, H.; Xu, Z. Interfacial sciences in unconventional petroleum production: From fundamentals to applications. Chem. Soc. Rev. 2015, 44, 5446–5494. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Ramírez, F.; Ruiz-Morales, Y. Island versus archipelago architecture for asphaltenes: Polycyclic aromatic hydrocarbon dimer theoretical studies. Energy Fuels 2013, 27, 1791–1808. [Google Scholar] [CrossRef]
- Lobato, M.D.; Pedrosa, J.M.; Hortal, A.R.; Martínez-Haya, B.; Lebrón-Aguilar, R.; Lago, S. Characterization and Langmuir film properties of asphaltenes extracted from Arabian light crude oil. Colloids Surf. A Physicochem. Eng. Asp. 2007, 298, 72–79. [Google Scholar] [CrossRef]
- Ekott, E.J.; Akpabio, E.J. A review of water-in-crude oil emulsion stability, destabilization and interfacial rheology. J. Eng. Appl. Sci. 2010, 5, 447–452. [Google Scholar]
- Morales, C.; Riebel, U.; Guzmán, N.; Guerra, M. Formulation of water in paraffin emulsions. Lat. Am. Appl. Res. 2011, 41, 105–112. [Google Scholar]
- Da Silva Ramos, A.C.; Haraguchi, L.; Notrispe, F.R.; Loh, W.; Mohamed, R.S. Interfacial and colloidal behavior of asphaltenes obtained from Brazilian crude oils. J. Pet. Sci. Eng. 2001, 32, 201–216. [Google Scholar] [CrossRef]
- Salager, J.-L.; Forgiarini, A.M. Emulsion stabilization, breaking, and inversion depends upon formulation: Advantage or inconvenience in flow assurance. Energy Fuels 2012, 26, 4027–4033. [Google Scholar] [CrossRef]
- Li, L.; Xu, J.; Tinsley, J.; Adamson, D.H.; Pethica, B.A.; Huang, J.S.; Prud’homme, R.K.; Guo, X. Improvement of oil flowability by assembly of comb-type copolymers with paraffin and asphaltene. AIChE J. 2012, 58, 2254–2261. [Google Scholar] [CrossRef]
- Venkatesan, R.; Östlund, J.-A.; Chawla, H.; Wattana, P.; Nydén, M.; Fogler, H.S. The effect of asphaltenes on the gelation of waxy oils. Energy Fuels 2003, 17, 1630–1640. [Google Scholar] [CrossRef]
- Kelland, M.A. Production Chemicals for the Oil and Gas Industry; CRC Press, Taylor and Francis: Boca Raton, FL, USA, 2014; Chapter 7. [Google Scholar]
- Lowry, E.; Sedghi, M.; Goual, L. Polymers for asphaltene dispersion: Interaction mechanisms and molecular design considerations. J. Mol. Liq. 2017, 230, 589–599. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Byun, D.H.; Lee, K.; Kim, J.-D.; Nho, N.S. Asphaltene precipitation with partially oxidized asphaltene from water/heavy crude oil emulsion. J. Pet. Sci. Eng. 2016, 146, 21–29. [Google Scholar] [CrossRef]
- Wiehe, I.A. Asphaltene solubility and fluid compatibility. Energy Fuels 2012, 26, 4004–4016. [Google Scholar] [CrossRef]
- Ovalles, C.; Rogel, E.; Morazan, H.; Moir, M.E. Synthesis, characterization, and mechanism of asphaltene inhibition of phosphopropoxylated asphaltenes. Fuel 2016, 180, 20–26. [Google Scholar] [CrossRef]
- Abdullah, M.M.; Al-Lohedan, H.A.; Atta, A.M. Novel magnetic iron oxide nanoparticles coated with sulfonated asphaltene as crude oil spill collectors. RSC Adv. 2016, 6, 59242–59249. [Google Scholar] [CrossRef]
- Yakubov, M.R.; Gryaznov, P.I.; Yakubova, S.G.; Tazeeva, E.G.; Mironov, N.A.; Milordov, D.V. Structural-group composition and properties of heavy oil asphaltenes modified with sulfuric acid. Pet. Sci. Technol. 2016, 34, 1805–1811. [Google Scholar] [CrossRef]
- José-Alberto, M.-H.; Jorge, A. Current knowledge and potential applications of ionic liquids in the petroleum industry. In Ionic Liquids: Applications and Perspectives; Kokorin, A., Ed.; InTech: Rijeka, Croatia, 2011; pp. 439–456. [Google Scholar] [CrossRef] [Green Version]
- Atta, A.M.; Al-Lohedan, H.A.; Abdullah, M.M.; ElSaeed, S.M. Application of new amphiphilic ionic liquid based on ethoxylated octadecylammonium tosylate as demulsifier and petroleum crude oil spill dispersant. J. Ind. Eng. Chem. 2016, 33, 122–130. [Google Scholar] [CrossRef]
- Ezzat, A.O.; Atta, A.M.; Al-Lohedan, H.A.; Abdullah, M.M.; Hashem, A.I. Synthesis and application of poly (ionic liquid) based on cardanol as demulsifier for heavy crude oil water emulsions. Energy Fuels 2018, 32, 214–225. [Google Scholar] [CrossRef]
- Atta, A.M.; Abdullah, M.M.; Al-Lohedan, H.A.; Gaffer, A.K. Synthesis and application of amphiphilic poly (ionic liquid) dendron from cashew nut shell oil as a green oilfield chemical for heavy petroleum crude oil emulsion. Energy Fuels 2018, 32, 4873–4884. [Google Scholar] [CrossRef]
- Atta, A.M.; Ezzat, A.O.; Abdullah, M.M.; Hashem, A.I. Effect of different families of hydrophobic anions of imadazolium ionic liquids on asphaltene dispersants in heavy crude oil. Energy Fuels 2017, 31, 8045–8053. [Google Scholar] [CrossRef]
- Abdullah, M.M.; AlQuraishi, A.A.; Allohedan, H.A.; AlMansour, A.O.; Atta, A.M. Synthesis of novel water soluble poly (ionic liquids) based on quaternary ammonium acrylamidomethyl propane sulfonate for enhanced oil recovery. J. Mol. Liq. 2017, 233, 508–516. [Google Scholar] [CrossRef]
- Oropeza, E.A.F.; Sotelo, L.V.C.; Ortega, A.L.; Cortez, J.G.H.; Ramírez, F.A.; Martinez, A.E.; Moreno, F.S.V. Synergistic Formulations of Functionalized Copolymers and Ionic Liquids for Dehydrated and Desalted of Medium, Heavy and Extra Heavy Crude Oils. U.S. Patent 9,587,182B2, 3 July 2017. [Google Scholar]
- Sakthivel, S.; Gardas, R.L.; Sangwai, J.S. Effect of alkyl ammonium ionic liquids on the interfacial tension of the crude oil–water system and their use for the enhanced oil recovery using ionic liquid-polymer flooding. Energy Fuels 2016, 30, 2514–2523. [Google Scholar] [CrossRef]
- Ogunlaja, S.A.; Hosten, E.; Tshentu, R.Z. Dispersion of asphaltenes in Petroleum with ionic liquids: Evaluation of molecular interactions in the binary mixture. Ind. Eng. Chem. Res. 2014, 53, 18390–18401. [Google Scholar] [CrossRef]
- Atta, A.M.; Elsaeed, A.M. Use of rosin-based nonionic surfactants as petroleum crude oil sludge dispersants. J. Appl. Polym. Sci. 2011, 122, 183–192. [Google Scholar] [CrossRef]
- AlHumaidan, F.S.; Hauser, A.; Rana, M.S.; Lababidi, H.M.; Behbehani, M. Changes in asphaltene structure during thermal cracking of residual oils: XRD study. Fuel 2015, 150, 558–564. [Google Scholar] [CrossRef]
- Ali, M.F.; Siddiqui, M.N.; Al-Hajji, A.A. Structural studies on residual fuel oil asphaltenes by RICO method. Pet. Sci. Technol. 2004, 22, 631–645. [Google Scholar] [CrossRef]
- Potangale, M.; Das, A.; Kapoor, S.; Tiwari, S. Effect of anion and alkyl chain length on the structure and interactions of N-alkyl pyridinium ionic liquids. J. Mol. Liq. 2017, 240, 694–707. [Google Scholar] [CrossRef]
- Yan, Q.; Zheng, H.-N.; Jiang, C.; Li, K.; Xiao, S.-J. EDC/NHS activation mechanism of polymethacrylic acid: Anhydride versus NHS-ester. RSC Adv. 2015, 5, 69939–69947. [Google Scholar] [CrossRef]
- Gonçalves, M.; Teixeira, M.; Pereira, R.; Mercury, R.; Matos, J.d.R. Contribution of thermal analysis for characterization of asphaltenes from Brazilian crude oil. J. Therm. Anal. Calorim. 2001, 64, 697–706. [Google Scholar] [CrossRef]
- Gryaznov, P.I.; Yakubova, S.G.; Tazeeva, E.G.; Milordov, D.V.; Yakubov, M.R. Thermal stability and sorption properties of asphaltene sulfocathionites. Pet. Sci. Technol. 2018, 36, 1837–1842. [Google Scholar] [CrossRef]
- Tong, B.; Liu, Q.-S.; Tan, Z.-C.; Welz-Biermann, U. Thermochemistry of alkyl pyridinium bromide ionic liquids: Calorimetric measurements and calculations. J. Phys. Chem. A 2010, 114, 3782–3787. [Google Scholar] [CrossRef]
- Masson, J.; Polomark, G.; Collins, P. Time-dependent microstructure of bitumen and its fractions by modulated differential scanning calorimetry. Energy Fuels 2002, 16, 470–476. [Google Scholar] [CrossRef] [Green Version]
- McCurdie, M.P.; Belfiore, L.A. Spectroscopic analysis of transition-metal coordination complexes based on poly (4-vinylpyridine) and dichlorotricarbonylruthenium (II). Polymer 1999, 40, 2889–2902. [Google Scholar] [CrossRef]
- Fares, M.M.; El-Khateeb, M.; Asali, K.J. Synthesis, characterization, and some properties of 4-vinylpyridine-Cr (CO) 5 containing polymers. J. Inorg. Organomet. Polym. 2003, 13, 143–155. [Google Scholar] [CrossRef]
- Tu, W.; Szklarz, G.; Adrjanowicz, K.; Grzybowska, K.; Knapik-Kowalczuk, J.; Paluch, M. Effect of cation n-Alkyl side-chain length, temperature, and pressure on the glass-transition dynamics and Crystallization tendency of the [C n C1Pyrr]+[Tf2N]− Ionic Liquid family. J. Phys. Chem. C 2019, 123, 12623–12637. [Google Scholar] [CrossRef]
- Gbadamosi, A.O.; Junin, R.; Manan, M.A.; Agi, A.; Yusuff, A.S. An overview of chemical enhanced oil recovery: Recent advances and prospects. Int. Nano Lett. 2019, 9, 171–202. [Google Scholar] [CrossRef] [Green Version]
- Atta, A.M. Electric desalting and dewatering of crude oil emulsion based on schiff base polymers as demulsifier. Int. J. Electrochem. Sci. 2013, 8, 9474–9498. [Google Scholar]
- Andersen, S.I.; Christensen, S.D. The critical micelle concentration of asphaltenes as measured by calorimetry. Energy Fuels 2000, 14, 38–42. [Google Scholar] [CrossRef]
- Chang, C.-L.; Fogler, H.S. Stabilization of asphaltenes in aliphatic solvents using alkylbenzene-derived amphiphiles. 2. Study of the asphaltene-amphiphile interactions and structures using Fourier transform infrared spectroscopy and small-angle X-ray scattering techniques. Langmuir 1994, 10, 1758–1766. [Google Scholar] [CrossRef]
- Sahiner, N.; Atta, A.M.; Yasar, A.O.; Al-Lohedan, H.A.; Ezzat, A.O. Surface activity of amphiphilic cationic pH-responsive poly (4-vinylpyridine) microgel at air/water interface. Colloids Surf. A Physicochem. Eng. Asp. 2015, 482, 647–655. [Google Scholar] [CrossRef]
- Kang, W.; Yin, X.; Yang, H.; Zhao, Y.; Huang, Z.; Hou, X.; Sarsenbekuly, B.; Zhu, Z.; Wang, P.; Zhang, X. Demulsification performance, behavior and mechanism of different demulsifiers on the light crude oil emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 545, 197–204. [Google Scholar] [CrossRef]
- Tao, J.; Shi, P.; Fang, S.; Li, K.; Zhang, H.; Duan, M. Effect of rheology properties of oil/water interface on demulsification of crude oil emulsions. Ind. Eng. Chem. Res. 2015, 54, 4851–4860. [Google Scholar] [CrossRef]
- Ezzat, A.O.; Atta, A.M.; Al-Lohedan, H.A.; Hashem, A.I. Synthesis and application of new surface active poly (ionic liquids) based on 1, 3-dialkylimidazolium as demulsifiers for heavy petroleum crude oil emulsions. J. Mol. Liq. 2018, 251, 201–211. [Google Scholar] [CrossRef]
Test | Method | Result |
---|---|---|
API gravity (degree) | ASTM-D5002 | 19.2° |
Specific gravity 60/60 (°F) | ASTMD-1298 | 0.939 |
Wax content (wt. %) | UOP 46/64 | 5 |
Asphaltenes content (wt.%) | IP 143/84 | 13 |
Pour point (°C) | IP 15/67(86) | 18 |
Salinity (NaCl; wt. %) | ASTM-D3230 | 0.24 |
Water content (wt. %) | ASTM D1744 | 0.145 |
Total acidity (mg of KOH/g of oil) | ASTM D664 | 2.353 |
Polymers | cmc (mg·L−1) | γcmc mN·m−1 | πcac mN·m−1 | −∂ γ/∂ ln c | Γmax × 1010 mol/cm2 | Amin nm2/molecule | RSN (mL) |
---|---|---|---|---|---|---|---|
QAP-Br | 125 ± 0.3 | 30.2 ± 0.2 | 42 | 6.75 | 2.73 | 0.060 | 14.8 |
AIL | 62.5 ± 0.5 | 36.2 ± 0.4 | 36 | 12.38 | 5.01 | 0.033 | 13.5 |
AIL-2 | - | - | - | - | - | - | 10.3 |
Code | Demulsifier Composition Wt. % | IFT (mN.m−1) Crude Oil: Water | ||||
---|---|---|---|---|---|---|
AIL | AIL-2 | QAP-Br | 90:10 | 50:50 | 10:90 | |
M1 | 100 | 0 | 0 | 2.5 | 1.3 | 0.83 |
M2 | 0 | 100 | 0 | 13.3 | 15.8 | 20.3 |
M3 | 0 | 0 | 100 | 1.3 | 0.53 | 0.13 |
M4 | 60 | 20 | 20 | 0.23 | 1.35 | 3.23 |
M5 | 40 | 20 | 40 | 1.34 | 0.55 | 1.23 |
M6 | 30 | 20 | 50 | 0.53 | 1.45 | 3.53 |
M7 | 20 | 20 | 60 | 2.31 | 1.23 | 0.88 |
Demulsifier Blends | Conc. (ppm) | Demulsification Data | |||||
---|---|---|---|---|---|---|---|
90:10 | 50:50 | 10:90 | |||||
DE% | Time (min) | DE% | Time (min) | DE% | Time (min) | ||
M6 | 100 | 50 | 600 | 20 | 600 | 10 | 600 |
1000 | 80 | 400 | 30 | 500 | 20 | 480 | |
5000 | 100 | 120 | 70 | 360 | 40 | 360 | |
M5 | 100 | 60 | 400 | 60 | 360 | 40 | 320 |
1000 | 70 | 360 | 80 | 240 | 50 | 280 | |
5000 | 80 | 340 | 100 | 120 | 70 | 240 | |
M7 | 100 | 25 | 500 | 40 | 400 | 100 | 120 |
1000 | 30 | 450 | 60 | 350 | 100 | 100 | |
5000 | 40 | 400 | 70 | 300 | 100 | 60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, A.I.; Atta, A.M.; El-Newehy, M.; El-Hefnawy, M.E. Synthesis and Application of New Amphiphilic Asphaltene Ionic Liquid Polymers to Demulsify Arabic Heavy Petroleum Crude Oil Emulsions. Polymers 2020, 12, 1273. https://doi.org/10.3390/polym12061273
Ismail AI, Atta AM, El-Newehy M, El-Hefnawy ME. Synthesis and Application of New Amphiphilic Asphaltene Ionic Liquid Polymers to Demulsify Arabic Heavy Petroleum Crude Oil Emulsions. Polymers. 2020; 12(6):1273. https://doi.org/10.3390/polym12061273
Chicago/Turabian StyleIsmail, Ali I., Ayman M. Atta, Mohamed El-Newehy, and Mohamed E. El-Hefnawy. 2020. "Synthesis and Application of New Amphiphilic Asphaltene Ionic Liquid Polymers to Demulsify Arabic Heavy Petroleum Crude Oil Emulsions" Polymers 12, no. 6: 1273. https://doi.org/10.3390/polym12061273
APA StyleIsmail, A. I., Atta, A. M., El-Newehy, M., & El-Hefnawy, M. E. (2020). Synthesis and Application of New Amphiphilic Asphaltene Ionic Liquid Polymers to Demulsify Arabic Heavy Petroleum Crude Oil Emulsions. Polymers, 12(6), 1273. https://doi.org/10.3390/polym12061273