Effect of Hydrophilic Polymers on Complexation Efficiency of Cyclodextrins in Enhancing Solubility and Release of Diflunisal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Phase Solubility Study
2.3. Preparation of Binary Complexes
2.4. Preparation of Ternary Complexes
2.5. Solubility Studies
2.6. In Vitro Diflunisal Dissolution Studies
2.7. Scanning Electron Microscopy (SEM)
2.8. Fourier-Transform Infrared Spectroscopy (FTIR)
2.9. Differential Scanning Calorimetry (DSC)
2.10. Powder X-ray Diffractometry (XRD)
2.11. Statistical Analysis
3. Results
3.1. Phase Solubility Study
3.2. Solubility Studies
3.3. In Vitro Dissolution Study
3.4. Scanning Electron Microscopy (SEM)
3.5. Fourier-Transform Infrared Spectroscopy (FTIR).
3.6. Differential Scanning Calorimetry (DSC)
3.7. Powder X-ray Diffractometry (XRD)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krishnaiah, Y.S. Pharmaceutical technologies for enhancing oral bioavailability of poorly soluble drugs. J. Bioequiv. Bioavailab. 2010, 2, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Sahoo, S.K.; Padhee, K.; Kochar, P.; Satapathy, A.; Pathak, N. Review on solubility enhancement techniques for hydrophobic drugs. Pharm. Glob. 2011, 3, 1–7. [Google Scholar]
- Rong, W.T.; Lu, Y.P.; Tao, Q.; Guo, M.; Lu, Y.; Ren, Y. Hydroxypropyl-sulfobutyl-beta-cyclodextrin improves the oral bioavailability of edaravonebymodulating drug efflux pump of enterocytes. J. Pharm. Sci. 2014, 103, 730–742. [Google Scholar] [CrossRef] [PubMed]
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance andenhancement techniques. ISRN Pharm. 2012, 5, 1–10. [Google Scholar]
- Crupi, V.; Majolino, D.; Mele, A.; Rossi, B.; Trotta, F.; Venuti, V. Modelling the interplay between covalent and physical interactions in cyclodextrin-based hydrogel: Effect of water confinement. Soft Matter. 2013, 9, 6457–6464. [Google Scholar] [CrossRef]
- Ferrati, S.; Nicolov, E.; Bansal, S.; Hosali, S.; Landis, M.; Grattoni, A. Docetaxel/2-hydroxypropyl β-cyclodextrin inclusion complex increases docetaxel solubility and release from a nanochannel drug delivery system. Curr. Drug Targets 2015, 16, 1645–1649. [Google Scholar] [CrossRef]
- Leuner, C.; Dressman, J. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 2000, 50, 47–60. [Google Scholar] [CrossRef]
- Li, C.; Fleisher, D.; Li, L.; Schwier, J.R.; Sweetana, S.A.; Vasudevan, V.; Zornes, L.L.; Pao, L.H.; Zhou, S.Y.; Stratford, R.E. Regional-dependent intestinal absorption and meal composition effects on systemic availability of LY303366, a lipopeptide antifungal agent, in dogs. J. Pharm. Sci. 2001, 90, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Peres, L.B.; Peres, L.B.; de Araújo, P.H.; Sayer, C. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Colloid Surf. B. 2016, 140, 317–323. [Google Scholar] [CrossRef]
- Loftsson, T.; Duchene, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 2007, 329, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Stancanelli, R.; Ficarra, R.; Cannavà, C.; Guardo, M.; Calabrò, M.L.; Ficarra, P.; Ottanà, R.; Maccari, R.; Crupi, V.; Majolino, D.; et al. UV–vis and FTIR-ATR characterization of 9-fluorenon-2-carboxyester/(2-hydroxypropyl)-β-cyclodextrin inclusion complex. J. Pharm. Biomed. 2008, 47, 704–709. [Google Scholar] [CrossRef]
- Vasconcelos, T.; Sarmento, B.; Costa, P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today 2007, 12, 1068–1075. [Google Scholar] [CrossRef]
- Stella, V.J.; He, Q. Cyclodextrins. Toxicol. Pathol. 2008, 36, 30–42. [Google Scholar] [CrossRef]
- Reddy, M.N.; Rehana, T.; Ramakrishna, S.; Chowdary, K.P.R.; Diwan, P.V. Beta-cyclodextrin complexes of celecoxib: Molecular-modeling, characterization, and dissolution studies. AAPS Pharm. Sci. 2004, 6, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Asbahr, A.C.C.; Franco, L.; Barison, A.; Silva, C.W.; Ferraz, H.G.; Rodrigues, L.N. Binary and ternary inclusion complexes of finasteride in HPβCD and polymers: Preparation and characterization. Bioorg. Med. Chem. 2009, 17, 2718–2723. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, T.; Tao, J.; Ji, G.; Wang, S. Preparation, characterization, and pharmacokinetics of the inclusion complex of genipin-β-cyclodextrin. Drug Dev. Ind. Pharm. 2009, 35, 1452–1459. [Google Scholar] [CrossRef]
- Shen, T.Y. Chemical and pharmacological properties of diflunisal. Pharmacotherapy 1983, 2, 3S–8S. [Google Scholar] [CrossRef]
- Lincoln, S.F.; Coates, J.H.; Doddridge, B.G.; Hounslow, A.M. The inclusion of the drug diflunisal by alpha-and beta-cyclodextrins. A nuclear magnetic resonance and ultraviolet spectroscopic study. J. Incl. Phenom. 1987, 5, 49–53. [Google Scholar] [CrossRef]
- Lincoln, S.F.; Hounslow, A.M.; Coates, J.H.; Villani, R.P.; Schiller, R.L. The inclusion of diflunisal by γ-cyclodextrin and permethylatedβ-cyclodextrin. A UV-visible and 19 F nuclear magnetic resonance spectroscopic study. J. Incl. Phenom. 1988, 6, 183–191. [Google Scholar] [CrossRef]
- Sideris, E.E.; Valsami, G.N.; Koupparis, M.A.; Macheras, P.E. Studies on the interaction of diflunisal ion with cyclodextrins using ion-selective electrode potentiometry. Eur. J. Pharm. Sci. 1999, 7, 271–278. [Google Scholar] [CrossRef]
- Zugasti, M.E.; Zornoza, A.; del Mar Goni, M.; Isasi, J.R.; Vélaz, I.; Martín, C.; Sánchez, M.; Martínez-Ohárriz, M.C. Influence of soluble and insoluble cyclodextrin polymers on drug release from hydroxypropyl methylcellulose tablets. Drug Dev. Ind. Pharm. 2009, 35, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Najib, N.M.; Suleiman, M.S. Characterization of a diflunisal polyethylene glycol solid dispersion system. Int. J. Pharm. 1989, 51, 225–232. [Google Scholar] [CrossRef]
- Zhong, Z.; Yang, X.; Fu, X.B.; Yao, Y.F.; Guo, B.H.; Huang, Y.; Xu, J. Crystalline inclusion complexes formed between the drug diflunisal and block copolymers. Chin. Chem. Lett. 2017, 28, 1268–1275. [Google Scholar] [CrossRef]
- Pignatello, R.; Ferro, M.; De Guidi, G.; Salemi, G.; Vandelli, M.A.; Guccione, S.; Geppi, M.; Forte, C.; Puglisi, G. Preparation, characterisation and photosensitivity studies of solid dispersions of diflunisal and Eudragit RS100® and RL100®. Int. J. Pharm. 2001, 218, 27–42. [Google Scholar] [CrossRef]
- Rodriguez-Espinosa, C.; Martinez-Oharriz, M.C.; Martin, C.; Goni, M.M.; Velaz, I.; Sanchez, M. Dissolution kinetics for coprecipitates of diflunisal with PVP K30. Eur. J. Drug Metab. Ph. 1998, 23, 109–112. [Google Scholar] [CrossRef]
- Évora, A.O.; Castro, R.A.; Maria, T.M.; Rosado, M.T.; Ramos Silva, M.; Matos Beja, A.; Canotilho, J.; Eusébio, M.E. Pyrazinamide-diflunisal: A new dual-drug co-crystal. Cryst. Growth Des. 2011, 11, 4780–4788. [Google Scholar] [CrossRef]
- Wang, L.; Tan, B.; Zhang, H.; Deng, Z. Pharmaceutical cocrystals of diflunisal with nicotinamide or isonicotinamide. Org. Process Res. Dev. 2013, 17, 1413–1418. [Google Scholar] [CrossRef]
- Mura, P.; Faucci, M.T.; Bettinetti, G.P. The influence of polyvinylpyrrolidone on naproxen complexation with hydroxypropyl-β-cyclodextrin. Eur. J. Pharm. Sci. 2001, 13, 187–194. [Google Scholar] [CrossRef]
- Ghareeb, M.M.; Abdulrasool, A.A.; Hussein, A.A.; Noordin, M.I. Kneading technique for preparation of binary solid dispersion of meloxicam with poloxamer 188. AAPS Pharm. Sci. Tech. 2009, 10, 1206–1215. [Google Scholar] [CrossRef]
- Kono, H.; Onishi, K.; Nakamura, T. Characterization and bisphenolA adsorption capacity of β-cyclodextrin–carboxymethylcellulose-based hydrogels. Carbohydr. Polym. 2013, 98, 784–792. [Google Scholar] [CrossRef]
- Ribeiro, L.; Loftsson, T.; Ferreira, D.; Veiga, F. Investigation and physicochemical characterization of vinpocetine-sulfobutyl ether β-cyclodextrin binary and ternary complexes. Chem. Pharm. Bull. 2003, 51, 914–922. [Google Scholar] [CrossRef] [Green Version]
- Kaur, I.P.; Kapil, M.; Smitha, R.; Aggarwal, D. Development of topically effective formulations of acetazolamide using HP-β-CD-polymer co-complexes. Curr. Drug Deliv. 2004, 1, 65–72. [Google Scholar] [CrossRef]
- Gundogdu, E.; Koksal, C.; Karasulu, E. Comparison of cefpodoxime proxetil release and antimicrobial activity from tablet formulations: Complexation with hydroxypropyl-β-cyclodextrin in the presence of water soluble polymer. Drug Dev. Ind. Pharm. 2012, 38, 689–696. [Google Scholar] [CrossRef]
- Sharma, A.; Jain, C.P.; Tanwar, Y.S. Preparation and characterization of solid dispersions of carvedilol with poloxamer 188. J. Chil. Chem. Soc. 2013, 58, 1553–1557. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, T.K.A.C. A phase solubility technique. Adv. Anal. Chem. Instrum. 1965, 4, 117–211. [Google Scholar]
- Bera, H.; Chekuri, S.; Sarkar, S.; Kumar, S.; Muvva, N.B.; Mothe, S.; Nadimpalli, J. Novel pimozide-β-cyclodextrin-polyvinylpyrrolidone inclusion complexes for Tourette syndrome treatment. J. Mol. Liq. 2016, 215, 135–143. [Google Scholar] [CrossRef]
- Loh, G.O.K.; Tan, Y.T.F.; Peh, K.K. Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin. Asian J. Pharm. Sci. 2016, 11, 536–546. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Batchelor, H.; Hanson, P.; Perrie, Y.; Mohammed, A.R. Physicochemical characterisation, drug polymer dissolution and in vitro evaluation of phenacetin and phenylbutazone solid dispersions with polyethylene glycol 8000. J. Pharm. Sci. 2011, 100, 4281–4294. [Google Scholar] [CrossRef]
- Gururaj, A.E.; Belakavadi, M.; Venkatesh, D.A.; Marmé, D.; Salimath, B.P. Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem. Biophys. Res. 2002, 297, 934–942. [Google Scholar] [CrossRef]
- Brewster, M.E.; Loftsson, T. Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 2007, 59, 645–666. [Google Scholar] [CrossRef]
- Ratna, J.V.; Annama Devi, G.S.; Chalumuru, R. Effect of PVA on HP–β-CD inclusion complexes of diclofenac for enhancing its dissolution rate. J. Glob. Trends Pharm. Sci. 2012, 3, 708–713. [Google Scholar]
- Ansari, M.T.; Hussain, A.; Nadeem, S.; Majeed, H.; Saeed-Ul-Hassan, S.; Tariq, I.; Mahmood, Q.; Khan, A.K.; Murtaza, G. Preparation and characterization of solid dispersions of artemether by freeze-dried method. Biomed. Res. Int. 2015. [Google Scholar] [CrossRef] [PubMed]
- Valero, M.; Pérez-Revuelta, B.I.; Rodríguez, L.J. Effect of PVP K-25 on the formation of the naproxen: β-ciclodextrin complex. Int. J. Pharm. 2003, 97–110. [Google Scholar] [CrossRef]
- Alexanian, C.; Papademou, H.; Vertzoni, M.; Archontaki, H.; Valsami, G. Effect of pH and water-soluble polymers on the aqueous solubility of nimesulide in the absence and presence of β-cyclodextrin derivatives. J. Pharm. Pharmacol. 2008, 60, 1433–1439. [Google Scholar] [CrossRef]
- Cappello, B.; Carmignani, C.; Iervolino, M.; La Rotonda, M.I.; Saettone, M.F. Solubilization of tropicamide by hydroxypropyl-β-cyclodextrin and water-soluble polymers: In vitro/in vivo studies. Int. J. Pharm. 2001, 213, 75–81. [Google Scholar] [CrossRef]
- Marcolino, A.I.P.; Macedo, L.B.; Nogueira-Librelotto, D.R.; Fernandes, J.R.; Bender, C.R.; Wust, K.M.; Rolim, C.M.B. Preparation, characterization and in vitro cytotoxicity study of dronedarone hydrochloride inclusion complexes. Mater. Sci. Eng. C 2019, 100, 48–61. [Google Scholar] [CrossRef]
- Mansur, H.S.; Sadahira, C.M.; Souza, A.N.; Mansur, A.A. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. 2008, 28, 539–548. [Google Scholar] [CrossRef]
- Malik, N.S.; Ahmad, M.; Minhas, M.U. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS ONE 2017, 12, e0172727. [Google Scholar] [CrossRef] [Green Version]
- Dandawate, P.R.; Vyas, A.; Ahmad, A.; Banerjee, S.; Deshpande, J.; Swamy, K.V.; Sarkar, F.H. Inclusion complex of novel curcumin analogue CDF and β-cyclodextrin (1: 2) and its enhanced in vivo anticancer activity against pancreatic cancer. Pharm. Res. 2012, 29, 1775–1786. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, S.; Sivakumar, M.; Subadevi, R.; Wu, N.L.; Lee, J.Y. Electrochemical investigations on the effect of dispersoid in PVA based solid polymer electrolytes. J. Appl. Polym. Sci. 2007, 103, 3950–3956. [Google Scholar] [CrossRef]
- Doiphode, D.; Gaikwad, S.; Pore, Y.; Kuchekar, B.; Late, S. Effect of β-cyclodextrincomplexation on physicochemical properties of zaleplon. J. Incl. Phenom. Macrocycl. Chem. 2008, 62, 43–50. [Google Scholar] [CrossRef]
- Shah, M.; Pore, Y.; Dhawale, S.; Burade, K.; Kuchekar, B. Physicochemical characterization of spray dried ternary micro-complexes of cefuroxime axetil with hydroxypropyl-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2013, 76, 391–401. [Google Scholar] [CrossRef]
- Pathak, T.K.; Vasoya, N.H.; Lakhani, V.K.; Modi, K.B. Structural and magnetic phase evolution study on needle-shaped nanoparticles of magnesium ferrite. Ceram. Int. 2010, 36, 275–281. [Google Scholar] [CrossRef]
- Hodge, R.M.; Edward, G.H.; Simon, G.P. Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer 1996, 37, 1371–1376. [Google Scholar] [CrossRef]
- Ugwu, S.O.; Alcala, M.J.; Bhardwaj, R.; Blanchard, J. Characterization of the complexation of diflunisal with hydroxypropyl-β-cyclodextrin. J. Pharm. Biomed. Anal. 1999, 19, 391–397. [Google Scholar] [CrossRef]
Inclusion Complexes | Stability Constant (M⁻1) | Complexation Efficiency |
---|---|---|
DIF: βCD | 528.6 ± 1.0 | 0.094 |
DIF: HPβCD | 1014.8 ± 0.1 | 0.180 |
DIF: βCD: PVA (2.5%) | 1142.5 ± 0.2 | 0.203 |
DIF: βCD: PVA (5.0%) | 1224.7 ± 1.1 | 0.218 |
DIF: βCD: PVA (10.0%) | 1241.5 ± 0.5 | 0.221 |
DIF: βCD: PXM-188 (2.5%) | 1134.3 ± 0.4 | 0.201 |
DIF: βCD: PXM-188 (5.0%) | 1241.5 ± 2.0 | 0.218 |
DIF: βCD: PXM-188 (10.0%) | 2317.0 ± 1.0 | 0.412 |
DIF: HPβCD: PVA (2.5%) | 1150.3 ± 0.6 | 0.204 |
DIF: HPβCD: PVA (5.0%) | 1241.5 ±1.0 | 0.221 |
DIF: HPβCD: PVA (10.0%) | 1267.1 ± 1.5 | 0.225 |
DIF: HPβCD: PXM-188 (2.5%) | 1309.2 ± 0.2 | 0.233 |
DIF: HPβCD: PXM-188 (5.0%) | 1404.4 ± 0.3 | 0.250 |
DIF: HPβCD: PXM-188 (10.0%) | 2407.3 ± 0.6 | 0.428 |
DIF:CD (w/w) | Solubility (µg/mL) | |
---|---|---|
βCD | HPβCD | |
1:0 | 44.6 ± 0.02 | 44.6 ± 0.02 |
1:1 | 284.5 ± 0.5 | 765.5 ± 0.5 |
1:2 | 450.3 ± 0.6 | 907.5 ± 0.5 |
1:4 | 500.5 ± 0.5 | 940.4 ± 0.5 |
1: 2 (2.5% PVA) | 789.6 ± 0.5 | 965.5 ± 0.5 |
1: 2 (5.0% PVA) | 846.3 ± 0.6 | 1049.3 ± 0.6 |
1: 2 (10.0% PVA) | 904.1 ± 0.5 | 1190.3 ± 0.6 |
1: 2 (2.5% CMC-Na) | 692.1 ±0.3 | 924.3 ± 0.6 |
1:2 (5.0% CMC-Na) | 723.6 ± 0.6 | 1000.5 ± 0.5 |
1:2 (10.0% CMC-Na) | 800.6 ± 0.5 | 1089.6 ± 0.6 |
1:2 (2.5% PXM-188) | 791.2 ± 0.7 | 998.5 ± 0.5 |
1:2 (5.0% PXM-188) | 894.4 ± 0.5 | 1181.6 ± 0.6 |
1:2 (10.0% PXM-188) | 930.0 ± 0.5 | 1259.5 ± 0.5 |
Samples | DE60 (%) | T50% (min) |
---|---|---|
DIF | 24.2 ± 0.3 | 57.8 ± 0.2 |
DIF:βCD 1:2 | 66.8 ± 0.02 | 11.3 ± 0.03 |
DIF:HPβCD 1:2 | 66.7 ± 0.02 | 9.4 ± 0.01 |
DIF:βCD 1:2 (10% PVA) | 71.6 ± 0.05 | 8.4 ± 0.01 |
DIF:βCD 1:2 (10% CMC-Na) | 68.5 ± 0.07 | 10.8 ± 0.01 |
DIF:βCD 1:2 (10% PXM-188) | 76.7 ± 0.07 | 6.2 ± 0.02 |
DIF:HPβCD 1:2 (10% PVA) | 76.4 ± 0.04 | 7.65 ± 0.01 |
DIF:HPβCD 1:2 (10% CMC-Na) | 69.3 ± 0.03 | 9.0 ± 0.01 |
DIF:HPβCD 1:2 (10% PXM-188) | 81.0 ± 0.01 | 6.53 ± 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashir, M.; Syed, H.K.; Asghar, S.; Irfan, M.; Almalki, W.H.; Menshawi, S.A.; Khan, I.U.; Shah, P.A.; Khalid, I.; Ahmad, J.; et al. Effect of Hydrophilic Polymers on Complexation Efficiency of Cyclodextrins in Enhancing Solubility and Release of Diflunisal. Polymers 2020, 12, 1564. https://doi.org/10.3390/polym12071564
Bashir M, Syed HK, Asghar S, Irfan M, Almalki WH, Menshawi SA, Khan IU, Shah PA, Khalid I, Ahmad J, et al. Effect of Hydrophilic Polymers on Complexation Efficiency of Cyclodextrins in Enhancing Solubility and Release of Diflunisal. Polymers. 2020; 12(7):1564. https://doi.org/10.3390/polym12071564
Chicago/Turabian StyleBashir, Mehreen, Haroon Khalid Syed, Sajid Asghar, Muhammad Irfan, Waleed Hassan Almalki, Salah Ali Menshawi, Ikram Ullah Khan, Pervaiz A. Shah, Ikrima Khalid, Junaid Ahmad, and et al. 2020. "Effect of Hydrophilic Polymers on Complexation Efficiency of Cyclodextrins in Enhancing Solubility and Release of Diflunisal" Polymers 12, no. 7: 1564. https://doi.org/10.3390/polym12071564