Nonlinear Optical Pigments. Two-Photon Absorption in Crosslinked Conjugated Polymers and Prospects for Remote Nonlinear Optical Thermometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design and Synthesis of Crosslinked Polymers Pol1 and Pol2 and of Model Compounds Mod1 and Mod2
2.2. Linear and Nonlinear Optical Properties of Model Compounds Mod1 and Mod2 in Chloroform Solution – TPEF Study
2.3. Linear and Nonlinear Optical Properties of Model Compounds Mod1 and Mod2 in Solid State and of Crosslinked Polymers Pol1 and Pol2 – ISTPEF and SSTPEF Studies
2.4. Postfunctionalization With Eu3+ Ions: Evaluation of One-, Two-, and Three-Photon Temperature Probes
3. Materials and Methods
3.1. General Methods
3.2. Materials
3.3. Linear Optical Measurements
3.4. Determination of Nonlinear Optical Properties With the Use of ISTPEF, SSTPEF and TPEF Techniques
3.5. One-, Two-, and Three-Photon Luminescent Thermometry Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cho, M.J.; Choi, D.H.; Sullivan, P.A.; Akelaitis, A.J.P.; Dalton, L.R. Recent progress in second-order nonlinear optical polymers and dendrimers. Prog. Polym. Sci. 2008, 33, 1013–1058. [Google Scholar] [CrossRef]
- Wijekoon, W.M.K.P.; Lee, K.S.; Prasad, P.N. Nonlinear Optical Properties of Polymers; Datasheet from Volume: “Physical Properties of Polymers Handbook” in Springer Materials; Springer Science+Business Media, LLC.: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Prasad, P.N. Design, Ultrastructure, and Dynamics of Nonlinear Optical Effects in Polymeric Thin Films. In Nonlinear Optical and Electroactive Polymers; Prasad, P.N., Ulrich, D.R., Eds.; Springer US: Boston, MA, USA, 1988; pp. 41–67. [Google Scholar]
- Virgili, T.; Marinotto, D.; Lanzani, G.; Bradley, D.D.C. Ultrafast resonant optical switching in isolated polyfluorenes chains. Appl. Phys. Lett. 2005, 86, 091113. [Google Scholar] [CrossRef]
- Luther-Davies, B.; Samoc, M. Third-order nonlinear optical organic materials for photonic switching. Curr. Opin. Solid State Mater. Sci. 1997, 2, 213–219. [Google Scholar] [CrossRef]
- Clark, J.; Lanzani, G. Organic photonics for communications. Nat. Photon. 2010, 4, 438–446. [Google Scholar] [CrossRef]
- Choe, K.Y.; Kim, J.E.; Lee, J.Y. Synthesis and electro-optic properties of novel Y-type polyester containing nitrothiazolylazoresorcinoxy group with highly enhanced thermal stability of dipole alignment. Dyes Pigm. 2016, 134, 27–35. [Google Scholar] [CrossRef]
- Choe, K.Y.; Lee, J.Y. Synthesis and electro-optic properties of novel X-type polyester containing dioxynitrobenzylidenecyanoacetate with highly enhanced thermal stability of dipole alignment. Polym. Bull. 2015, 72, 2649–2665. [Google Scholar] [CrossRef]
- Caruso, U.; Diana, R.; Fort, A.; Panunzi, B.; Roviello, A. Synthesis of polymers containing second order NLO-active thiophene and thiazole based chromophores. Macromol. Symp. 2006, 234, 87–93. [Google Scholar] [CrossRef]
- Caruso, U.; Casalboni, M.; Fort, A.; Fusco, M.; Panunzi, B.; Quatela, A.; Roviello, A.; Sarcinelli, F. New side-chain polyurethanes with highly conjugated push-pull chromophores for second order NLO applications. Opt. Mater. 2005, 27, 1800–1810. [Google Scholar] [CrossRef]
- Aiello, I.; Caruso, U.; Ghedini, M.; Panunzi, B.; Quatela, A.; Roviello, A.; Sarcinelli, F. NLO active Pd(II)-based organometallic side-chain polymers with C,N or N,O-chelating chromophoric ligands. Polymer 2003, 44, 7635–7643. [Google Scholar] [CrossRef]
- Borbone, F.; Carella, A.; Caruso, U.; Roviello, G.; Tuzi, A.; Dardano, P.; Lettieri, S.; Maddalena, P.; Barsella, A. Large second-order NLO activity in poly(4-vinylpyridine) grafted with PdII and CuII chromophoric complexes with tridentate bent ligands containing heterocycles. Eur. J. Inorg. Chem. 2008, 1846–1853. [Google Scholar] [CrossRef]
- Borbone, F.; Caruso, U.; Centore, R.; De Maria, A.; Fort, A.; Fusco, M.; Panunzi, B.; Roviello, A.; Tuzi, A. Second order optical nonlinearities of copper(II) and palladium(II) complexes with N-salicylidene-N′-aroylhydrazine tridentate ligands. Eur. J. Inorg. Chem. 2004, 2467–2476. [Google Scholar] [CrossRef]
- Caruso, U.; De Maria, A.; Panunzi, B.; Roviello, A. Poly(4-vinylpyridine) as the host ligand of metal-containing chromophores for second-order nonlinear optical active materials. J. Polym. Sci. A Polym. Chem. 2002, 40, 2987–2993. [Google Scholar] [CrossRef]
- Dalton, L.R.; Sullivan, P.A.; Bale, D.H. Electric Field Poled Organic Electro-optic Materials: State of the Art and Future Prospects. Chem. Rev. 2010, 110, 25–55. [Google Scholar] [CrossRef]
- Szukalski, A.; Haupa, K.; Miniewicz, A.; Mysliwiec, J. Photoinduced birefringence in PMMA polymer doped with photoisomerizable pyrazoline derivative. J. Phys. Chem. C 2015, 119, 10007–10014. [Google Scholar] [CrossRef]
- Parafiniuk, K.; Monnereau, C.; Sznitko, L.; Mettra, B.; Zelechowska, M.; Andraud, C.; Miniewicz, A.; Mysliwiec, J. Distributed Feedback Lasing in Amorphous Polymers with Covalently Bonded Fluorescent Dyes: The Influence of Photoisomerization Process. Macromolecules 2017, 50, 6164–6173. [Google Scholar] [CrossRef]
- Szukalski, A.; Korbut, A.; Ortyl, E. Structural and light driven molecular engineering in photochromic polymers. Polymer 2020, 192. [Google Scholar] [CrossRef]
- Caruso, U.; Centore, R.; Panunzi, B.; Roviello, A.; Tuzi, A. Grafting poly(4-vinylpyridine) with a second-order nonlinear optically active nickel(II) chromophore. Eur. J. Inorg. Chem. 2005, 1, 2747–2753. [Google Scholar] [CrossRef]
- Castañón-Alonso, S.L.; Morales-Saavedra, O.G.; Almaraz-Girón, M.A.; Báez-Pimiento, S.; Islas-Jácome, A.; Rocha-Ramírez, L.M.; Domínguez-Ortiz, A.; Esparza-Schulz, M.; Romero-Galarza, A.; Hernández-Rojas, M.E. Quadratic non-linear optical properties of the poly(2,5-bis(but-2-ynyloxy)benzoate containing the 2-(ethyl(4-(4-nitrophenyl)buta-1,3-diynyl)phenyl)amino)ethanol) chromophore. Polymers 2020, 12, 241. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Ye, C.; Qin, J.; Li, Z. A series of AB2-type second-order nonlinear optical (NLO) polyaryleneethynylenes: Using different end-capped spacers with adjustable bulk to achieve high NLO coefficients. Polym. Chem. 2013, 4, 2361–2370. [Google Scholar] [CrossRef]
- Guichaoua, D.; Kulyk, B.; Smokal, V.; Migalska-Zalas, A.; Kharchenko, O.; Krupka, O.; Kolendo, O.; Sahraoui, B. UV irradiation induce NLO modulation in photochromic styrylquinoline-based polymers: Computational and experimental studies. Org. Electron. 2019, 66, 175–182. [Google Scholar] [CrossRef]
- Nakanishi, H.; Matsuda, H.; Okada, S.; Kato, M. Evaluation of nonlinear optical susceptibility of polydiacetylenes by third harmonic generation. Polym. Adv. Technol. 1990, 1, 75–79. [Google Scholar] [CrossRef]
- Ramos-Ortiz, G.; Maldonado, J.L.; Meneses-Nava, M.A.; Barbosa-García, O.; Olmos, M.; Cha, M. Third-harmonic generation performance of organic polymer films doped with triphenylmethane derivative dyes. Opt. Mater. 2007, 29, 636–641. [Google Scholar] [CrossRef]
- Kim, J.; Kumar, C.H.S.S.P.; Cha, M.; Choi, H.; Kim, K.-J.; Peyghambarian, N. Quasi-phase-matched third harmonic generation in organic multilayers. Sci. Rep. 2018, 8, 16419-16419. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Castillo, M.; Ledesma-Juarez, A.; Guizado-Rodriguez, M.; Castrellon-Uribe, J.; Ramos-Ortiz, G.; Rodríguez, M.; Maldonado, J.L.; Guerrero-Alvarez, J.A.; Barba, V. Third-order nonlinear optical behavior of novel polythiophene derivatives functionalized with disperse red 19 chromophore. Int. J. Polym. Sci. 2015. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Shao, P.; Qin, J.; Huang, Z.-l. Two-Photon Absorption Property of a Conjugated Polymer: Influence of Solvent and Concentration on Its Property. J. Phys. Chem. B 2010, 114, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Gómez, M.A.; Guzmán-Rabadán, K.K.; González-Juárez, E.; Güizado-Rodríguez, M.; Ramos-Ortiz, G.; Alba-Rosales, J.E.; Panzo-Medrano, H.; Barba, V.; Rodríguez, M.; Maldonado, J.L.; et al. Physicochemical and Luminescent Properties of Copolymers Composed of Three Monomers: Polythiophenes Based on 3-Hexylthiophene and 3,4-Ethylenedioxythiophene. Int. J. Polym. Sci. 2017. [Google Scholar] [CrossRef]
- Hanczyc, P.; Justyniarski, A.; Gedefaw, D.A.; Andersson, M.R.; Samoc, M.; Müller, C. Two-photon absorption of polyfluorene aggregates stabilized by insulin amyloid fibrils. RSC Adv. 2015, 5, 49363–49368. [Google Scholar] [CrossRef] [Green Version]
- de la Garza-Rubí, R.M.A.; Güizado-Rodríguez, M.; Mayorga-Cruz, D.; Basurto-Pensado, M.A.; Guerrero-Álvarez, J.A.; Ramos-Ortiz, G.; Rodríguez, M.; Maldonado, J.L. Polythiophene derivative functionalized with disperse red 1 chromophore: Its third-order nonlinear optical properties through Z-scan technique under continuous and femtosecond irradiation. Opt. Mater. 2015, 46, 366–372. [Google Scholar] [CrossRef]
- Szeremeta, J.; Kołkowski, R.; Nyk, M.; Samoć, M. Wavelength dependence of the complex third-order nonlinear optical susceptibility of poly(3-hexylthiophene) studied by femtosecond Z -scan in solution and thin film. J. Phys. Chem. C 2013, 117, 26197–26203. [Google Scholar] [CrossRef]
- Mettra, B.; Appaix, F.; Olesiak-Banska, J.; Le Bahers, T.; Leung, A.; Matczyszyn, K.; Samoc, M.; Van Der Sanden, B.; Monnereau, C.; Andraud, C. A Fluorescent Polymer Probe with High Selectivity toward Vascular Endothelial Cells for and beyond Noninvasive Two-Photon Intravital Imaging of Brain Vasculature. ACS Appl. Mater. Int. 2016, 8, 17047–17059. [Google Scholar] [CrossRef]
- Samoc, M.; Samoc, A.; Luther-Davies, B. Two-photon and one-photon resonant third-order nonlinear optical properties of π-conjugated polymers. Synth. Met. 2000, 109, 79–83. [Google Scholar] [CrossRef]
- Samoc, M.; Samoc, A.; Luther-Davies, B.; Bao, Z.; Deb, S.K.; Yu, L.; Hsieh, B.; Scherf, U. Prospects of third-order nonlinear optical polymers for guided wave applications: ‘Rigid rod’, ’hairy rod‘, ‘ladder’ and ’picket fence‘ polymers. Mol. Cryst. Liq. Cryst. Sci. Technol. 1999, 20, 183–196. [Google Scholar]
- Samoc, M.; Samoc, A.; Luther-Davies, B.; Bao, Z.; Yu, L.; Hsieh, B.; Scherf, U. Femtosecond Z-scan and degenerate four-wave mixing measurements of real and imaginary parts of the third-order nonlinearity of soluble conjugated polymers. J. Opt. Soc. Am. B Opt. Phys. 1998, 15, 817–825. [Google Scholar] [CrossRef]
- Samoc, M.; Samoc, A.; Luther-Davies, B.; Humphrey, M.G.; Wong, M.S. Third-order optical nonlinearities of oligomers, dendrimers and polymers derived from solution Z-scan studies. Opt. Mater. 2003, 21, 485–488. [Google Scholar] [CrossRef]
- Sakhno, O.; Yezhov, P.; Hryn, V.; Rudenko, V.; Smirnova, T. Optical and nonlinear properties of photonic polymer nanocomposites and holographic gratings modified with noble metal nanoparticles. Polymers 2020, 12, 480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheik-Bahae, M.; Said, A.A.; Wei, T.H.; Hagan, D.J.; Van Stryland, E.W. Sensitive Measurement of Optical Nonlinearities Using a Single Beam. IEEE J. Quant. Electron. 1990, 26, 760–769. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Y.L.; Wang, Q.B.; Yu, H.; Ji, X.Y.; Zhang, X. Enhanced two-photon fluorescence and fluorescence imaging of novel probe for calcium ion by self-assembly with conjugated polymer. Polymers 2019, 11, 643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzmán-Rabadán, K.K.; Güizado-Rodríguez, M.; Barba, V.; Rodríguez, M.; Velusamy, J.; Ramos-Ortiz, G. Synthesis of fluorene-thiophene-benzothiadiazole (D-π-A) molecules by direct arylation reactions: Formation of nanoparticles and their fluorescence study by one- and two-photon absorption. Opt. Mater. 2020, 101. [Google Scholar] [CrossRef]
- Slusna, L.; Haizer, L.; Jane, E.; Bondarev, D.; Szocs, V.; Drzik, M.; Noskovicova, E.; Lorenc, D.; Velic, D. Linear and Multi-Photon Fluorescence of Thiophene Based Copolymer with Electron-Accepting Side Chains. J. Fluoresc. 2018, 28, 1333–1340. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Liu, X.; Phan, S.; Lv, F.; Belfield, K.D.; Wang, S.; Schanze, K.S. Two-Photon Absorption of Cationic Conjugated Polyelectrolytes: Effects of Aggregation and Application to 2-Photon-Sensitized Fluorescence from Green Fluorescent Protein. Chem. Mater. 2017, 29, 3295–3303. [Google Scholar] [CrossRef]
- Medishetty, R.; Zaręba, J.K.; Mayer, D.; Samoć, M.; Fischer, R.A. Nonlinear optical properties, upconversion and lasing in metal–organic frameworks. Chem. Soc. Rev. 2017, 46, 4976–5004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Quah, H.S.; Wen, S.; Wang, J.; Kumar, P.S.; Eda, G.; Vittal, J.J.; Ji, W. Nonlinear optical properties of a one-dimensional coordination polymer. J. Mater. Chem. C 2017. [Google Scholar] [CrossRef]
- Quah, H.S.; Chen, W.; Schreyer, M.K.; Yang, H.; Wong, M.W.; Ji, W.; Vittal, J.J. Multiphoton harvesting metal-organic frameworks. Nat. Commun. 2015, 6, 7954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medishetty, R.; Nemec, L.; Nalla, V.; Henke, S.; Samoć, M.; Reuter, K.; Fischer, R.A. Multi-Photon Absorption in Metal–Organic Frameworks. Angew. Chem. Int. Ed. 2017, 56, 14743–14748. [Google Scholar] [CrossRef]
- Yu, J.; Cui, Y.; Xu, H.; Yang, Y.; Wang, Z.; Chen, B.; Qian, G. Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nat. Commun. 2013, 4, 2719. [Google Scholar] [CrossRef] [Green Version]
- Zareba, J.K.; Nyk, M.; Janczak, J.; Samoć, M. Three-Photon Absorption of Coordination Polymer Transforms UV-to-VIS Thermometry into NIR-to-VIS Thermometry. ACS Appl. Mater. Int. 2019, 11, 10435–10441. [Google Scholar] [CrossRef]
- Mayer, D.C.; Manzi, A.; Medishetty, R.; Winkler, B.; Schneider, C.; Kieslich, G.; Pöthig, A.; Feldmann, J.; Fischer, R.A. Controlling Multiphoton Absorption Efficiency by Chromophore Packing in Metal-Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 11594–11602. [Google Scholar] [CrossRef]
- Schiek, R. Paints and pigments. J. Chem. Educ. 1980, 57, 270. [Google Scholar] [CrossRef]
- Mysliwiec, J.; Szukalski, A.; Sznitko, L.; Miniewicz, A.; Haupa, K.; Zygadlo, K.; Matczyszyn, K.; Olesiak-Bańska, J.; Samoć, M. Synthesis, optical and nonlinear optical properties of new pyrazoline derivatives. Dyes Pigm. 2014, 102, 63–70. [Google Scholar]
- Coe, B.J.; Foxon, S.P.; Helliwell, M.; Rusanova, D.; Brunschwig, B.S.; Clays, K.; Depotter, G.; Nyk, M.; Samoć, M.; Wawrzyńczyk, D.; et al. Heptametallic, octupolar nonlinear optical chromophores with six ferrocenyl substituents. Chem. Eur. J. 2013, 19, 6613–6629. [Google Scholar]
- Mazur, L.; Kołkowski, R.; Matczyszyn, K.; Mathevet, F.; Rannou, P.; Attias, A.J.; Samoć, M. Spectral dependence of nonlinear absorption and refraction in terthiophene-based organic semiconductors. Opt. Mater. 2012, 34, 1682–1685. [Google Scholar] [CrossRef]
- Simpson, P.V.; Watson, L.A.; Barlow, A.; Wang, G.; Cifuentes, M.P.; Humphrey, M.G. Record multiphoton absorption cross-sections by dendrimer organometalation. Angew. Chem. Int. Ed. 2016, 55, 2387–2391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlicki, M.; Collins, H.A.; Denning, R.G.; Anderson, H.L. Two-Photon Absorption and the Design of Two-Photon Dyes. Angew. Chem. Int. Ed. 2009, 48, 3244–3266. [Google Scholar] [CrossRef] [PubMed]
- He, G.S.; Tan, L.S.; Zheng, Q.; Prasad, P.N. Multiphoton absorbing materials: Molecular designs, characterizations, and applications. Chem. Rev. 2008, 108, 1245–1330. [Google Scholar] [CrossRef]
- Smith, M.B.; March, J. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed.; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2006; pp. 1–2357. [Google Scholar]
- Makarov, N.S.; Drobizhev, M.; Rebane, A. Two-photon absorption standards in the 550–1600 nm excitation wavelength range. Opt. Express 2008, 16, 4029–4047. [Google Scholar] [CrossRef]
- Schwich, T.; Cifuentes, M.P.; Gugger, P.A.; Samoć, M.; Humphrey, M.G. Electronic, molecular weight, molecular volume, and financial cost-scaling and comparison of two-photon absorption efficiency in disparate molecules (organometallic complexes for nonlinear optics. 48.)—A response to comment on ‘organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers’. Adv. Mater. 2011, 23, 1433–1435. [Google Scholar]
- Bednarska, J.; Zaleśny, R.; Arul Murugan, N.; Bartkowiak, W.; Ågren, H.; Odelius, M. Elucidating the Mechanism of Zn2+ Sensing by a Bipyridine Probe Based on Two-Photon Absorption. J. Phys. Chem. B 2016, 120, 9067–9075. [Google Scholar] [CrossRef]
- Samoć, M.; Matczyszyn, K.; Nyk, M.; Olesiak-Bańska, J.; Wawrzyńczyk, D.; Hańczyc, P.; Szeremeta, J.; Wielgus, M.; Gordel, M.; Mazur, L.; et al. Nonlinear absorption and nonlinear refraction: Maximizing the merit factors. Proc. SPIE 2012, 8258. [Google Scholar] [CrossRef] [Green Version]
- Birks, J.B. Photophysics of Aromatic Molecules; Wiley-Interscience: London, UK; New York, NY, USA, 1970. [Google Scholar]
- Chen, Y.; Lam, J.W.Y.; Kwok, R.T.K.; Liu, B.; Tang, B.Z. Aggregation-induced emission: Fundamental understanding and future developments. Mater. Horiz. 2019, 6, 428–433. [Google Scholar] [CrossRef]
- Cheng, Y.; Gao, Y.; Lin, H.; Huang, F.; Wang, Y. Strategy design for ratiometric luminescence thermometry: Circumventing the limitation of thermally coupled levels. J. Mater. Chem. C 2018, 6, 7462–7478. [Google Scholar] [CrossRef]
- Reisfeld, R.; Zigansky, E.; Gaft, M. Europium probe for estimation of site symmetry in glass films, glasses and crystals. Mol. Phys. 2004, 102, 1319–1330. [Google Scholar] [CrossRef]
- Wang, X.-D.; Wolfbeis, O.S.; Meier, R.J. Luminescent probes and sensors for temperature. Chem. Soc. Rev. 2013, 42, 7834–7869. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Webb, W.W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B 1996, 13, 481–491. [Google Scholar] [CrossRef]
Linear Optical Parameters | Nonlinear Optical Parameters | |||||||
---|---|---|---|---|---|---|---|---|
Material | λmax λexc. = 377 nm | τ (ns) at λmax | φ λexc. = 377 nm | Technique | σ2 (GM), λ c | σ2·φ | σ2/M | σ2·φ/M |
Mod1 | 504 nm, CHCl3 | 1.98 a | 0.54 | TPEF | 219, 690 nm | 118 | 0.34 | 0.18 |
540 nm, s.s. | 1.92 b | 0.32 | SSTPEF | 390, 700 nm | 125 | 0.56 | 0.18 | |
Mod2 | 523 nm, CHCl3 | 2.04 a | 0.79 | TPEF | 502, 780 nm | 396 | 0.56 | 0.44 |
485, 523 nm, s.s. | 1.70 b | 0.16 | SSTPEF | 982, 700 nm | 157 | 1.10 | 0.18 | |
Pol1 | 501 nm, s.s. | 0.79 b | 0.11 | ISTPEF | 576, 690 nm | 63 | 0.96 | 0.11 |
SSTPEF | 850, 690 nm | 93 | 1.42 | 0.16 | ||||
Pol2 | 490 nm, s.s. | 0.77 b | 0.07 | ISTPEF | 839, 700 nm | 58 | 0.94 | 0.07 |
SSTPEF | 1494, 700 nm | 104 | 1.67 | 0.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaręba, J.K.; Nyk, M.; Samoć, M. Nonlinear Optical Pigments. Two-Photon Absorption in Crosslinked Conjugated Polymers and Prospects for Remote Nonlinear Optical Thermometry. Polymers 2020, 12, 1670. https://doi.org/10.3390/polym12081670
Zaręba JK, Nyk M, Samoć M. Nonlinear Optical Pigments. Two-Photon Absorption in Crosslinked Conjugated Polymers and Prospects for Remote Nonlinear Optical Thermometry. Polymers. 2020; 12(8):1670. https://doi.org/10.3390/polym12081670
Chicago/Turabian StyleZaręba, Jan K., Marcin Nyk, and Marek Samoć. 2020. "Nonlinear Optical Pigments. Two-Photon Absorption in Crosslinked Conjugated Polymers and Prospects for Remote Nonlinear Optical Thermometry" Polymers 12, no. 8: 1670. https://doi.org/10.3390/polym12081670
APA StyleZaręba, J. K., Nyk, M., & Samoć, M. (2020). Nonlinear Optical Pigments. Two-Photon Absorption in Crosslinked Conjugated Polymers and Prospects for Remote Nonlinear Optical Thermometry. Polymers, 12(8), 1670. https://doi.org/10.3390/polym12081670