Development of Environmentally Friendly Atom Transfer Radical Polymerization
Abstract
:1. Introduction
2. Applications of Iron Catalyst in Various ATRP Systems
2.1. Applications of Iron Catalyst in Normal ATRP
2.2. Applications of Iron Catalyst in Reverse ATRP
2.3. Applications of Iron Catalyst in Initiators for Continuous Activator Regeneration (ICAR) ATRP
2.4. Applications of Iron Catalyst in Activators Generated by Electron Transfer (AGET) ATRP
2.5. Applications of Iron Catalyst in Generation of Activators by Monomer Addition (GAMA) ATRP
2.6. Applications of Iron Catalyst in Supplemental Activator and Reducing Agent (SARA) ATRP
2.7. Developments of Iron Ligands in ATRP
2.7.1. Nitrogen-Based Ligands
2.7.2. Phosphorous Ligands
2.7.3. Organic Acid-Based Ligands
2.7.4. Onium Salt-Based Ligands
2.7.5. Miscellaneous Ligands
3. The Enzyme Mediated ATRP System
4. The Metal-Free Catalyst Mediated ATRP System
4.1. Organic Photocatalyst Mediated Metal-Free ATRP
4.1.1. Phenothiazines Mediated ATRP
4.1.2. Aromatic Hydrocarbons Mediated ATRP
4.1.3. Fluorescein Mediated ATRP
4.1.4. Phenazines and N-aryl Phenoxazines Mediated ATRP
4.1.5. Carbazoles Mediated ATRP
4.1.6. Benzaldehyde Derivative Mediated ATRP
4.1.7. Other Photocatalyst Mediated ATRP
4.2. Applications of Metal-Free ATRP in The Preparation of Composite Materials
5. Summary and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Wang, J.S.; Matyjaszewski, K. Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117, 5614–5615. [Google Scholar] [CrossRef]
- Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-ferf- butylphenoxide) initiating system: Possibility of living radical polymerization. Macromolecules 1995, 28, 1721–1723. [Google Scholar] [CrossRef]
- Becer, C.R.; Hoogenboom, R.; Fournier, D.; Schubert, U.S. Cu(II)-mediated ATRP of MMA by using a novel tetradentate amine ligand with oligo(ethylene glycol) pendant groups. Macromol. Rapid Commun. 2007, 28, 1161–1166. [Google Scholar] [CrossRef]
- Magenau, A.J.D.; Kwak, Y.; Matyjaszewski, K. ATRP of methacrylates utilizing CuIIX2/L and copper wire. Macromolecules 2010, 43, 9682–9689. [Google Scholar] [CrossRef]
- Simal, F.; Demonceau, A.; Noels, A.F. Kharasch addition and controlled atom transfer radical polymerisation (ATRP) of vinyl monomers catalysed by grubbs’ ruthenium-carbene complexes. Tetrahedron Lett. 1999, 40, 5689–5693. [Google Scholar] [CrossRef]
- Simal, F.; Jan, D.; Delaude, L.; Demonceau, A.; Spirlet, M.R.; Noels, A.F. Evaluation of ruthenium-based complexes for the controlled radical polymerization of vinyl monomers. Can. J. Chem. 2001, 79, 529–535. [Google Scholar] [CrossRef]
- Tsarevsky, N.V.; Matyjaszewski, K. “Green” atom transfer radical polymerization: From process design to preparation of well-defined environmentally friendly polymeric materials. Chem. Rev. 2007, 107, 2270–2299. [Google Scholar] [CrossRef]
- Le Grognec, E.; Claverie, J.; Poli, R. Radical polymerization of styrene controlled by half-sandwich Mo(III)/Mo(IV) couples: All basic mechanisms are possible. J. Am. Chem. Soc. 2001, 123, 9513–9524. [Google Scholar] [CrossRef]
- Stoffelbach, F.; Haddleton, D.M.; Poli, R. Controlled radical polymerization of alkyl acrylates and styrene using a half-sandwich molybdenum(III) complex containing diazadiene ligands. Eur. Polym. J. 2003, 39, 2099–2105. [Google Scholar] [CrossRef]
- Cardozo, A.F.; Manoury, E.; Julcour, C.; Blanco, J.F.; Delmas, H.; Gayet, F.; Poli, R. Preparation of polymer supported phosphine ligands by metal catalyzed living radical copolymerization and their application to hydroformylation catalysis. Chemcatchem 2013, 5, 1161–1169. [Google Scholar] [CrossRef]
- Uegaki, H.; Kotani, Y.; Kamigaito, M.; Sawamoto, M. Nickel-mediated living radical polymerization of methyl methacrylate. Macromolecules 1997, 30, 2249–2253. [Google Scholar] [CrossRef]
- Abraham, S.; Ha, C.S.; Kim, I. Synthesis of multinuclear pyridylimine based palladium(II) complexes with a functionalized star polystyrene core and evaluation of their catalytic activity towards ethylene oligomerization. Macromol. Rapid Commun. 2006, 27, 1386–1392. [Google Scholar] [CrossRef]
- Xu, Q.; Zhu, Y.; Yuan, Z.; Tang, H. Atom transfer radical polymerization of methyl acrylate, methyl methacrylate and styrene in the presence of trolamine as a highly effective promoter. Chin. Chem. Lett. 2015, 26, 773–778. [Google Scholar] [CrossRef]
- Lorusso, E.; Ali, W.; Leniart, M.; Gebert, B.; Oberthür, M.; Gutmann, J.S. Tuning the density of zwitterionic polymer brushes on PET fabrics by aminolysis: Effect on antifouling performances. Polymers 2020, 12, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, F.; Liu, Z.; Sun, J.; Feng, L.; Hu, J. Optically active micelles from self-assembly of MPEG-b-PMALM copolymer in water. Chin. Chem. Lett. 2009, 20, 231–234. [Google Scholar] [CrossRef]
- Feng, L.; Zhao, F.; Liu, Z.; Sun, J.; Hu, J. Synthesis of optically active polymers bearing amino acid moieties by atom transfer radical polymerization. Chin. Chem. Lett. 2007, 18, 875–878. [Google Scholar] [CrossRef]
- Tang, X.; Gao, L.; Fan, X.; Zhou, Q. Synthesis and characterization of H-type amphiphilic liquid crystalline block copolymers by ATRP. Chin. Chem. Lett. 2008, 19, 237–240. [Google Scholar] [CrossRef]
- Xu, Y.; Xue, H.; Ding, J.; Gao, L.; Ding, M. Controlled/“Living” radical polymerization of (-)-menthyl methacrylate. Chin. Chem. Lett. 2003, 14, 141–142. [Google Scholar]
- Park, C.; Heo, J.; Lee, J.; Kim, T.; Kim, S.Y. Well-defined dual light- and thermo-responsive rod-coil block copolymers containing an azobenzene, MEO2MA and OEGMA. Polymers 2020, 12, 284. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Wang, C.; Wei, Y. A boronate affinity restricted-access material with external hydrophilic bottlebrush polymers for pretreatment of cis-diols in biological matrices. Chin. Chem. Lett. 2018, 29, 521–523. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiang, F.; Zhang, P.; Luo, J.; Tang, H. Atom transfer radical polymerization and copolymerization of isoprene catalyzed by copper bromide/2,2’-bipyridine. Chin. Chem. Lett. 2016, 27, 910–914. [Google Scholar] [CrossRef]
- Cui, S.; Ji, X.; Liang, F.; Yang, Z. Ionic liquid functionalized polymer composite nanotubes toward dye decomposition. Chin. Chem. Lett. 2015, 26, 942–945. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Xia, J. Atom transfer radical polymerization. Chem. Rev. 2001, 101, 2921–2990. [Google Scholar] [CrossRef]
- Kamigaito, M.; Ando, T.; Sawamoto, M. Metal-catalyzed living radical polymerization. Chem. Rev. 2001, 101, 3689–3746. [Google Scholar] [CrossRef] [PubMed]
- Matyjaszewski, K.; Wei, M.; Xia, J.; McDermott, N.E. Controlled/“living” radical polymerization of styrene and methyl methacrylate catalyzed by iron complexes. Macromolecules 1997, 30, 8161–8164. [Google Scholar] [CrossRef]
- Ando, T.; Kamigaito, M.; Sawamoto, M. Iron(II) chloride complex for living radical polymerization of methyl methacrylate. Macromolecules 1997, 30, 4507–4510. [Google Scholar] [CrossRef]
- Ouchi, M.; Terashima, T.; Sawamoto, M. Transition metal-catalyzed living radical polymerization: Toward perfection in catalysis and precision polymer synthesis. Chem. Rev. 2009, 109, 4963–5050. [Google Scholar] [CrossRef]
- Xiong, Q.; Zhang, X.; Wei, W.; Wei, G.; Su, Z. Enzyme-mediated reversible deactivation radical polymerization for functional materials: Principles, synthesis, and applications. Polym. Chem. 2020, 11, 1673–1690. [Google Scholar] [CrossRef]
- Discekici, E.H.; Anastasaki, A.; de Alaniz, J.R.; Hawker, C.J. Evolution and future directions of metal-free atom transfer radical polymerization. Macromolecules 2018, 51, 7421–7434. [Google Scholar] [CrossRef] [Green Version]
- Dadashi-Silab, S.; Matyjaszewski, K. Iron catalysts in atom transfer radical Polymerization. Molecules 2020, 25, 1648. [Google Scholar] [CrossRef] [Green Version]
- Xue, Z.; He, D.; Xie, X. Iron-catalyzed atom transfer radical polymerization. Polym. Chem. 2015, 6, 1660–1687. [Google Scholar] [CrossRef]
- Teodorescu, M.; Gaynor, S.G.; Matyjaszewski, K. Halide anions as ligands in iron-mediated atom transfer radical polymerization. Macromolecules 2000, 33, 2335–2339. [Google Scholar] [CrossRef]
- Onishi, I.; Baek, K.Y.; Kotani, Y.; Kamigaito, M.; Sawamoto, M. Iron-catalyzed living radical polymerization of acrylates: Iodide-based initiating systems and block and random copolymerizations. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 2033–2043. [Google Scholar] [CrossRef]
- Uchiike, C.; Terashima, T.; Ouchi, M.; Ando, T.; Kamigaito, M.; Sawamoto, M. Evolution of iron catalysts for effective living radical polymerization: Design of phosphine/halogen ligands in FeX2(PR3)2. Macromolecules 2007, 40, 8658–8662. [Google Scholar] [CrossRef]
- Zhu, S.; Yan, D. New ligands for atom-transfer radical polymerization. Macromol. Rapid Commun. 2000, 21, 1209–1213. [Google Scholar] [CrossRef]
- Gibson, V.C.; O’Reilly, R.K.; Reed, W.; Wass, D.F.; White, A.J.P.; Williams, D.J. Four-coordinate iron complexes bearing α-diimine ligands: Efficient catalysts for atom transfer radical polymerisation (ATRP). Chem. Commun. 2002, 8, 1850–1851. [Google Scholar] [CrossRef]
- O’Reilly, R.K.; Gibson, V.C.; White, A.J.P.; Williams, D.J. Five-coordinate iron(II) complexes bearing tridentate nitrogen donor ligands as catalysts for atom transfer radical polymerisation. Polyhedron 2004, 23, 2921–2928. [Google Scholar] [CrossRef]
- Zhang, H.; Schubert, U.S. Iron halide mediated atom transfer radical polymerization of methyl methacrylate with N-alkyl-2-pyridylmethanimine as the ligand. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 4882–4894. [Google Scholar] [CrossRef]
- Wang, G.; Zhu, X.; Zhu, J.; Cheng, Z. Iron-mediated atom transfer radical polymerization of styrene with tris(3,6-dioxaheptyl) amine as a Ligand. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 483–489. [Google Scholar] [CrossRef]
- Xue, Z.; Noh, S.K.; Lyoo, W.S. 2-[(diphenylphosphino)methyl]pyridine as ligand for iron-based atom transfer radical polymerization. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 2922–2935. [Google Scholar] [CrossRef]
- Hao, Z.; Han, Y.; Gao, W.; Xin, L.; Mu, Y. Iron(II) complexes bearing anilido-imine ligands: Synthesis and catalysis on ATRP of methyl methacrylate. Polyhedron 2014, 83, 236–241. [Google Scholar] [CrossRef]
- Niibayashi, S.; Hayakawa, H.; Jin, R.; Nagashima, H. Reusable and environmentally friendly ionic trinuclear iron complex catalyst for atom transfer radical polymerization. Chem. Commun. 2007, 18, 1855–1857. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, M.; Sunada, Y.; Kai, H.; Koike, N.; Hamada, A.; Hayakawa, H.; Jin, R.; Nagashima, H. New iron(II) complexes for atom-transfer radical polymerization: The ligand design for triazacyclononane results in high reactivity and catalyst performance. Adv. Synth. Catal. 2009, 21, 2086–2090. [Google Scholar] [CrossRef]
- Nakanishi, S.; Kawamura, M.; Kai, H.; Jin, R.; Sunada, Y.; Nagashima, H. Well-defined iron complexes as efficient catalysts for “green” atom-transfer radical polymerization of styrene, methyl methacrylate, and butyl acrylate with low catalyst loadings and catalyst recycling. Chem. Eur. J. 2014, 20, 5802–5814. [Google Scholar] [CrossRef] [PubMed]
- Moineau, G.; Dubois, P.; Jérôme, R.; Senninger, T.; Teyssie, P. Alternative atom transfer radical polymerization for MMA using FeCl3 and AIBN in the presence of triphenylphosphine: An easy way to well-controlled PMMA. Macromolecules 1998, 31, 545–547. [Google Scholar] [CrossRef]
- Chen, X.; Qiu, K. Synthesis of well-defined poly(methyl methacrylate) by radical polymerization with a new initiation system TPED†/FeCl3/PPh3. Macromolecules 1999, 32, 8711–8715. [Google Scholar] [CrossRef]
- Qin, D.; Qin, S.; Chen, X.; Qiu, K. Living/controlled radical polymerization of methyl methacrylate by reverse ATRP with DCDPS/FeCl3/PPh3 initiating system. Polymer 2000, 41, 7347–7353. [Google Scholar] [CrossRef]
- Wang, G.; Zhu, X.; Cheng, Z.; Zhu, J. Reverse atom transfer radical polymerization of methyl methacrylate with FeCl3/pyromellitic acid. Eur. Polym. J. 2003, 39, 2161–2165. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, L.; Jiang, X.; Tian, C.; Zhao, X.; Ke, Q.; Pan, X.; Cheng, Z.; Zhu, X. Facile iron-mediated dispersant-free suspension polymerization of methyl methacrylate via reverse ATRP in water. Macromol. Rapid Commun. 2013, 34, 1747–1754. [Google Scholar] [CrossRef]
- Ferro, R.; Milione, S.; Bertolasi, V.; Capacchione, C.; Grassi, A. Iron complexes of bis(oxazoline) ligand as novel catalysts for efficient atom transfer radical polymerization of styrene. Macromolecules 2007, 40, 8544–8546. [Google Scholar] [CrossRef]
- Ferro, R.; Milione, S.; Caruso, T.; Grassi, A. Iron(III) complexes of bidentate nitrogen ligands as catalysts in reverse atom transfer radical polymerization of styrene. J. Mol. Catal. A Chem. 2009, 307, 128–133. [Google Scholar] [CrossRef]
- Allan, L.E.N.; MacDonald, J.P.; Reckling, A.M.; Kozak, C.M.; Shaver, M.P. Controlled radical polymerization mediated by amine-bis(phenolate) iron(III) complexes. Macromol. Rapid Commun. 2012, 33, 414–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saikia, P.J.; Goswami, A.; Baruah, S.D. Reverse atom transfer radical polymerization of stearyl methacrylate using 2,2’-azobisisobutyronitrile as the initiator. J. Appl. Polym. Sci. 2002, 85, 1236–1245. [Google Scholar] [CrossRef]
- Saikia, P.J.; Baruah, S.D. Controlled radical polymerization of n-hexadecyl methacrylate mediated by tris(2,2’-bipyridine)iron(III) complexes. Polym. Bull. 2013, 70, 3291–3303. [Google Scholar] [CrossRef]
- Pizarro, G.D.C.; Marambio, O.G.; Jeria-Orell, M.; Flores, M.E.; Rivas, B.L. Amphiphilic diblock copolymers poly(2-hydroxyethylmethacrylate)-b-(N-phenylmaleimide) and poly(2-hydroxyethylmethacrylate)-b-(styrene) using the macroinitiator poly(HEMA)-Cl by ATRP: Preparation, characterization, and thermal properties. J. Appl. Polym. Sci. 2010, 118, 3649–3657. [Google Scholar] [CrossRef]
- Hou, C.; Ji, C.; Qu, R.; Wang, C.; Sun, C.; Zhou, W.; Yu, M. An iron-based reverse ATRP process for the living radical polymerization of acrylonitrile. J. Appl. Polym. Sci. 2007, 105, 1575–1580. [Google Scholar] [CrossRef]
- Saikia, P.J.; Hazarika, A.K.; Baruah, S.D. Iron(III)-mediated ATRP systems of n-docosyl acrylate with AIBN and BPO. Polym. Bull. 2013, 70, 1483–1498. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, H.; Zhou, W. Reverse ATRP process of methacrylonitrile in [C4mim][PF6]. J. Macromol. Sci. Part A Pure Appl.Chem. 2009, 46, 759–764. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Jakubowski, W.; Min, K.; Tang, W.; Huang, J.; Braunecker, W.A.; Tsarevsky, N.V. Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents. Proc. Natl. Acad. Sci. USA 2006, 103, 15309–15314. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Miao, J.; Cheng, Z.; Zhu, X. Iron-mediated ICAR ATRP of styrene and methyl methacrylate in the absence of thermal radical initiator. Macromol. Rapid Commun. 2010, 31, 275–280. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, L.; Zhang, Z.; Zhu, J.; Tu, Y.; Cheng, Z.; Zhu, X. Iron-mediated ICAR ATRP of methyl methacrylate. Macromolecules 2011, 44, 3233–3239. [Google Scholar] [CrossRef]
- Wang, G.; Lu, M.; Liu, Y. ICAR ATRP of methyl methacrylate catalyzed by FeCl3•6H2O/succinic acid. J. Appl. Polym. Sci. 2012, 126, 381–386. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Parker, B.; Matyjaszewski, K. ATRP of MMA with ppm levels of iron catalyst. Macromolecules 2011, 44, 4022–4025. [Google Scholar] [CrossRef]
- Mukumoto, K.; Wang, Y.; Matyjaszewski, K. Iron-based ICAR ATRP of styrene with ppm amounts of FeIIIBr3 and 1,1′-Azobis(cyclohexanecarbonitrile). ACS Macro Lett. 2012, 1, 599–602. [Google Scholar] [CrossRef]
- Okada, S.; Park, S.; Matyjaszewski, K. Initiators for continuous activator regeneration atom transfer radical polymerization of methyl methacrylate and styrene with N-heterocyclic carbene as ligands for Fe-based catalysts. ACS Macro Lett. 2014, 3, 944–947. [Google Scholar] [CrossRef]
- Min, K.; Gao, H.; Matyjaszewski, K. Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer (AGET). J. Am. Chem. Soc. 2005, 127, 3825–3830. [Google Scholar] [CrossRef] [PubMed]
- Jakubowski, W.; Matyjaszewski, K. Activator generated by electron transfer for atom transfer radical polymerization. Macromolecules 2005, 38, 4139–4146. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, Z.; Shi, S.; Li, Q.; Zhu, X. AGET ATRP of methyl methacrylate catalyzed by FeCl3/iminodiacetic acid in the presence of air. Polymer 2008, 49, 3054–3059. [Google Scholar] [CrossRef]
- Bai, L.; Zhang, L.; Zhang, Z.; Zhu, J.; Zhou, N.; Cheng, Z.; Zhu, X. Alumina additives for fast iron-mediated AGET ATRP of MMA using onium salt as ligand. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 3970–3979. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, L.; Chen, W.; Chen, L.; Liu, Y.; Xu, T.; Cheng, Z. Iron-mediated AGET ATRP of MMA using acidic/basic salts as reducing agents. Polym. Bull. 2013, 70, 631–642. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, Z.; Tang, F.; Li, Q.; Zhu, X. Iron(III)-mediated ATRP of methyl methacrylate using activators generated by electron transfer. Macromol. Chem. Phys. 2008, 209, 1705–1713. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, Z.; Lü, Y.; Zhu, X. A highly active iron-based catalyst system for the AGET ATRP of styrene. Macromol. Rapid Commun. 2009, 30, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Sen, A. Electron-transfer-induced iron-based atom transfer radical polymerization of styrene derivatives and copolymerization of styrene and methyl methacrylate. Macromolecules 2008, 41, 4514–4518. [Google Scholar] [CrossRef]
- Xue, Z.; Oh, H.S.; Noh, S.K.; Lyoo, W.S. Phosphorus ligands for iron(III)-mediated atom transfer radical polymerization of methyl methacrylate. Macromol. Rapid Commun. 2008, 29, 1887–1894. [Google Scholar] [CrossRef]
- Bai, L.; Zhang, L.; Zhang, Z.; Tu, Y.; Zhou, N.; Cheng, Z.; Zhu, X. Iron-mediated AGET ATRP of styrene in the presence of catalytic amounts of base. Macromolecules 2010, 43, 9283–9290. [Google Scholar] [CrossRef]
- Deng, Z.; Qiu, L.; Bai, L.; Zhou, Y.; Lin, B.; Zhao, J.; Cheng, Z.; Zhu, X.; Yan, F. Basic ionic liquid/FeCl3•6H2O as an efficient catalyst for AGET ATRP of methyl methacrylate. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 1605–1610. [Google Scholar] [CrossRef]
- Deng, Z.; Guo, J.; Qiu, L.; Zhou, Y.; Xia, L.; Yan, F. Basic ionic liquids: A new type of ligand and catalyst for the AGET ATRP of methyl methacrylate. Polym. Chem. 2012, 3, 2436–2443. [Google Scholar] [CrossRef]
- Silvestri, I.P.; Cellesi, F. AGET ATRP of poly[poly(ethylene glycol) methyl ether methacrylate] catalyzed by hydrophobic iron(III)-porphyrins. Macromol. Chem. Phys. 2015, 216, 2032–2039. [Google Scholar] [CrossRef]
- Bai, L.; Huang, S.; Wang, W.; Xu, H.; Chen, H.; Niu, Y.; Wang, M. Iron-mediated activators generated by electron transfer for atom-transfer radical polymerization of methyl methacrylate using ionic liquid as ligand and Fe(0) wire as reducing agent. Polym. Int. 2015, 64, 1754–1761. [Google Scholar] [CrossRef]
- Xue, Z.; Linh, N.T.B.; Noh, S.K.; Lyoo, W.S. Phosphorus-containing ligands for iron(III)-catalyzed atom transfer radical polymerization. Angew. Chem. Int. Ed. 2008, 47, 6426–6429. [Google Scholar] [CrossRef]
- Xue, Z.; He, D.; Noh, S.K.; Lyoo, W.S. Iron(III)-mediated atom transfer radical polymerization in the absence of any additives. Macromolecules 2009, 42, 2949–2957. [Google Scholar] [CrossRef]
- Khan, M.Y.; Chen, X.; Lee, S.W.; Noh, S.K. Development of new atom transfer radical polymerization system by Iron (III)-metal salts without using any external initiator and reducing agent. Macromol. Rapid Commun. 2013, 34, 1225–1230. [Google Scholar] [CrossRef]
- He, D.; Xue, Z.; Khan, M.Y.; Noh, S.K.; Lyoo, W.S. Phosphorus ligands for iron(III)-mediated ATRP of styrene via generation of activators by monomer addition. J. Polym. Sci. Part A Polym. Chem. 2009, 48, 144–151. [Google Scholar] [CrossRef]
- Satoh, K.; Aoshima, H.; Kamigaito, M. Iron(III) chloride/R-Cl/tributylphosphine for metal-catalyzed living radical polymerization: A unique system with a higher oxidation state iron complex. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 6358–6363. [Google Scholar] [CrossRef]
- Aoshima, H.; Satoh, K.; Umemura, T.; Kamigaito, M. A simple combination of higher-oxidation-state FeX3 and phosphine or amine ligand for living radical polymerization of styrene, methacrylate, and acrylate. Polym. Chem. 2013, 4, 3554–3562. [Google Scholar] [CrossRef]
- Wang, Y.; Kwak, Y.; Matyjaszewski, K. Enhanced activity of ATRP Fe catalysts with phosphines containing electron donating groups. Macromolecules 2012, 45, 5911–5915. [Google Scholar] [CrossRef]
- Yang, D.; Wang, J.; Han, J.; Khan, M.Y.; Xie, X.; Xue, Z. Initiator-free atom transfer radical polymerization of methyl methacrylate based on FeBr3(PPh3)n system. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 3842–3850. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Matyjaszewski, K. ATRP of methyl acrylate with metallic zinc, magnesium, and iron as reducing agents and supplemental activators. Macromolecules 2011, 44, 683–685. [Google Scholar] [CrossRef]
- Cordeiro, R.A.; Rocha, N.; Mendes, J.P.; Matyjaszewski, K.; Guliashvili, T.; Serra, A.C.; Coelho, J.F.J. Synthesis of well-defined poly(2-(dimethylamino)ethyl methacrylate) under mild conditions and its co-polymers with cholesterol and PEG using Fe(0)/Cu(II) based SARA ATRP. Polym. Chem. 2013, 4, 3088–3097. [Google Scholar] [CrossRef]
- Maximiano, P.; Mendes, J.P.; Mendonça, P.V.; Abreu, C.M.R.; Guliashvili, T.; Serra, A.C.; Coelho, J.F.J. Cyclopentyl methyl ether: A new green Co-solvent for supplemental activator and reducing agent atom transfer radical polymerization. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 2722–2729. [Google Scholar] [CrossRef]
- He, W.; Zhang, L.; Miao, J.; Cheng, Z.; Zhu, X. Facile iron-mediated AGET ATRP for water soluble poly(ethylene glycol) monomethyl ether methacrylate in water. Macromol. Rapid Commun. 2012, 33, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Lu, M.; Liu, L.; Wu, H.; Zhong, M. Fe-mediated ARGET atom transfer radical polymerization of methyl methacrylate in ionic liquid-based microemulsion. J. Appl. Polym. Sci. 2013, 128, 3077–3083. [Google Scholar] [CrossRef]
- Wang, G.; Lu, M.; Li, J.; Liu, L.; Luo, B.; Wu, H.; Zhong, M. Copolymerization of styrene and methyl methacrylate mediated by iron wire/N,N,N′,N′-tetramethyl-1,2-ethanediamine as catalyst in the presence of air. Iran. Polym. J. 2013, 22, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Paik, H.; Matyjaszewski, K. Polymerization of vinyl acetate promoted by iron complexes. Macromolecules 1999, 32, 8310–8314. [Google Scholar] [CrossRef]
- Bergenudd, H.; Jonsson, M.; Malmström, E. Investigation of iron complexes in ATRP: Indications of different iron species in normal and reverse ATRP. J. Mol. Catal. A Chem. 2011, 346, 20–28. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.; Chu, J.; Zhang, K. Reverse atom transfer radical polymerization of methyl methacrylate catalyzed by FeCl3•6H2O/MA5-DETA system. J. Macromol. Sci. Part A Pure Appl. Chem. 2005, 42, 95–103. [Google Scholar] [CrossRef]
- Zhang, H.; Marin, V.; Fijten, M.W.M.; Schubert, U.S. High-throughput experimentation in atom transfer radical polymerization: A general approach toward a directed design and understanding of optimal catalytic systems. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 1876–1885. [Google Scholar] [CrossRef]
- Bian, C.; Zhou, Y.; Guo, J.; Luo, Z. Visible-light-induced atom-transfer-radical polymerization with a ppm-level iron catalyst. Ind. Eng. Chem. Res. 2017, 56, 4949–4956. [Google Scholar] [CrossRef]
- Uchiike, C.; Ouchi, M.; Ando, T.; Kamigaito, M.; Sawamoto, M. Evolution of iron catalysts for effective living radical polymerization: P-N chelate ligand for enhancement of catalytic performances. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 6819–6827. [Google Scholar] [CrossRef]
- Paik, H.J.; Teodorescu, M.; Xia, J.; Matyjaszewski, K. Block copolymerizations of vinyl acetate by combination of conventional and atom transfer radical polymerization. Macromolecules 1999, 32, 7023–7031. [Google Scholar] [CrossRef]
- Chen, J.; Chu, J.; Zhang, K. Atom transfer radical polymerizations of methyl methacrylate catalyzed by EBiB/SnCl2•2H2O(FeCl2•4H2O)/FeCl3•6H2O/MA5-DETA systems. Polymer 2004, 45, 151–155. [Google Scholar] [CrossRef]
- Wang, G.; Lu, M.; Wu, H. Preparation of poly(methyl methacrylate) by ATRP using initiators for continuous activator regeneration (ICAR) in ionic liquid/microemulsions. Polymer 2012, 53, 1093–1097. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Coca, S.; Gaynor, S.G.; Wei, M.; Woodworth, B.E. Zerovalent metals in controlled/“living”radical polymerization. Macromolecules 1997, 30, 7348–7350. [Google Scholar] [CrossRef]
- Ibrahim, K.; Yliheikkilä, K.; Abu-Surrah, A.; Löfgren, B.; Lappalainen, K.; Leskelä, M.; Repo, T.; Seppälä, J. Polymerization of methyl methacrylate in the presence of iron(II) complex with tetradentate nitrogen ligands under conditions of atom transfer radical polymerization. Eur. Polym. J. 2004, 40, 1095–1104. [Google Scholar] [CrossRef]
- Göbelt, B.; Matyjaszewski, K. Diimino- and diaminopyridine complexes of CuBr and FeBr2 as catalysts in atom transfer radical polymerization (ATRP). Macromol. Chem. Phys. 2000, 201, 1619–1624. [Google Scholar] [CrossRef]
- Xue, Z.; Lee, B.W.; Noh, S.K.; Lyoo, W.S. Pyridylphosphine ligands for iron-based atom transfer radical polymerization of methyl methacrylate and styrene. Polymer 2007, 48, 4704–4714. [Google Scholar] [CrossRef]
- Nishizawa, K.; Ouchi, M.; Sawamoto, M. Phosphine-ligand decoration toward active and robust iron catalysts in LRP. Macromolecules 2013, 46, 3342–3349. [Google Scholar] [CrossRef]
- Xue, Z.; Noh, S.K. Iron catalyzed atom transfer radical polymerization of methyl methacrylate using diphenyl-2-pyridylphosphine as a ligand. Macromol. Res. 2007, 15, 302–307. [Google Scholar] [CrossRef]
- Yamamoto, K.; Tanaka, H.; Sakaguchi, M.; Shimada, S. Well-defined poly(methyl methacrylate) grafted to polyethylene with reverse atom transfer radical polymerization initiated by peroxides. Polymer 2003, 44, 7661–7669. [Google Scholar] [CrossRef]
- Hou, C.; Ying, L. Synthesis of polyacrylonitrile via reverse atom transfer radical polymerization initiated by 1,1,2,2-tetraphenyl-1,2 ethanediol/FeCl3/triphenylphosphine. J. Appl. Polym. Sci. 2007, 104, 4041–4045. [Google Scholar] [CrossRef]
- Zhu, S.; Yan, D. Atom transfer radical polymerization of styrene and methyl methacrylate catalyzed by FeCl2/iminodiacetic acid. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 4308–4314. [Google Scholar] [CrossRef]
- Ma, J.; Chen, H.; Zong, G.; Wang, C.; Liu, D. FeCl3/acetic acid-mediated reverse atom transfer radical polymerization of acrylonitrile. J. Macromol. Sci. Part A Pure Appl. Chem. 2010, 47, 1075–1079. [Google Scholar] [CrossRef]
- Zhu, S.; Yan, D. Atom transfer radical polymerization of methyl methacrylate catalyzed by IronII chloride/isophthalic acid system. Macromolecules 2000, 33, 8233–8238. [Google Scholar] [CrossRef]
- Deng, K.; Zhang, Y.; Liu, Y.; Shi, Z.; Wang, Y. Atom transfer radical polymerization of styrene catalyzed by ironII chloride/EDTA. Chem. J. Internet. 2002, 4, 11–19. [Google Scholar]
- Zhu, S.; Yan, D.; Zhang, G.; Li, M. Controlled/“living” radical polymerization of styrene catalyzed by FeCl2/succinic acid. Macromol. Chem. Phys. 2000, 201, 2666–2669. [Google Scholar] [CrossRef]
- Zong, G.; Chen, H.; Qu, R.; Wang, C.; Ji, N. Synthesis of polyacrylonitrile-grafted cross-linked N-chlorosulfonamidated polystyrene via surface-initiated ARGET ATRP, and use of the resin in mercury removal after modification. J. Hazard. Mater. 2011, 186, 614–621. [Google Scholar] [CrossRef]
- Zong, G.; Chen, H.; Tan, Z.; Wang, C.; Qu, R. Atom transfer radical polymerization with activators regenerated by electron transfer of acrylonitrile from silica nanoparticles, and adsorption properties of the resin for Hg2+ after amidoximation with hydroxylamine. Polym. Adv. Technol. 2011, 22, 2626–2632. [Google Scholar] [CrossRef]
- Hou, C.; Liu, J.; Wang, C. Reverse atom-transfer radical polymerization of acrylonitrile catalyzed by FeCl3/iminodiacetic acid. Polym. Int. 2006, 55, 171–175. [Google Scholar] [CrossRef]
- Hou, C.; Qu, R.; Ying, L.; Wang, C. Reverse atom transfer radical polymerization of acrylonitrile. J. Appl. Polym. Sci. 2006, 99, 32–36. [Google Scholar] [CrossRef]
- Chen, H.; Wang, C.; Liu, D.; Wang, M.; Ji, C. ARGET ATRP of acrylonitrile with ionic liquid as reaction medium and FeBr3/isophthalic acid as catalyst system. J. Appl. Polym. Sci. 2011, 122, 3298–3302. [Google Scholar] [CrossRef]
- Wang, G.; Zhu, X.; Cheng, Z.; Zhu, J. New ligands for the Fe(III)-mediated reverse atom transfer radical polymerization of methyl methacrylate. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 2912–2921. [Google Scholar] [CrossRef]
- Bergenudd, H.; Jonsson, M.; Nyström, D.; Malmström, E. Heterogeneous iron(II)-chloride mediated radical polymerization of styrene. J. Mol. Catal. A Chem. 2009, 306, 69–76. [Google Scholar] [CrossRef]
- Wang, G.; Lu, M.; Wu, H. SET LRP of MMA mediated by Fe(0)/EDTA in the presence of air. Polym. Bull. 2012, 69, 417–427. [Google Scholar] [CrossRef]
- Wang, G.; Zhu, X.; Cheng, Z.; Zhu, J. Atom transfer radical polymerization of styrene using various onium salts as ligands. J. Macromol. Sci. Part A Pure Appl. Chem. 2004, 41, 487–499. [Google Scholar] [CrossRef]
- Wang, Y.; Matyjaszewski, K. ATRP of MMA catalyzed by FeIIBr2 in the presence of triflate anions. Macromolecules 2011, 44, 1226–1228. [Google Scholar] [CrossRef]
- Ishio, M.; Katsube, M.; Ouchi, M.; Sawamoto, M.; Inoue, Y. Active, versatile, and removable iron catalysts with phosphazenium salts for living radical polymerization of methacrylates. Macromolecules 2009, 42, 188–193. [Google Scholar] [CrossRef]
- Sarbu, T.; Matyjaszewski, K. ATRP of methyl methacrylate in the presence of ionic liquids with ferrous and cuprous anions. Macromol. Chem. Phys. 2001, 202, 3379–3391. [Google Scholar] [CrossRef]
- Chen, H.; Meng, Y.; Liang, Y.; Lu, Z.; Lv, P. Application of novel ionic liquids for reverse atom transfer radical polymerization of methacrylonitrile without any additional ligand. J. Mater. Res. 2009, 24, 1880–1885. [Google Scholar] [CrossRef]
- Yang, D.; He, D.; Liao, Y.; Xue, Z.; Zhou, X.; Xie, X. Iron-mediated AGET ATRP of methyl methacrylate in the presence of polar solvents as ligands. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 1020–1027. [Google Scholar] [CrossRef]
- Xue, Z.; Zhou, J.; He, D.; Wu, F.; Yang, D.; Ye, Y.; Liao, Y.; Zhou, X.; Xie, X. Iron-catalyzed AGET ATRP of methyl methacrylate using an alcohol as a reducing agent in a polar solvent. Dalton Trans. 2014, 43, 16528–16533. [Google Scholar] [CrossRef]
- Ng, Y.H.; di Lena, F.; Chai, C.L.L. Metalloenzymatic radical polymerization using alkyl halides as initiators. Polym. Chem. 2011, 2, 589–594. [Google Scholar] [CrossRef]
- Ng, Y.H.; di Lena, F.; Chai, C.L.L. PolyPEGA with predetermined molecular weights from enzyme-mediated radical polymerization in water. Chem. Commun. 2011, 47, 6464–6466. [Google Scholar] [CrossRef]
- Sigg, S.J.; Seidi, F.; Renggli, K.; Silva, T.B.; Kali, G.; Bruns, N. Horseradish peroxidase as a catalyst for atom transfer radical polymerization. Macromol. Rapid Commun. 2011, 32, 1710–1715. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.B.; Spulber, M.; Kocik, M.K.; Seidi, F.; Charan, H.; Rother, M.; Sigg, S.J.; Renggli, K.; Kali, G.; Bruns, N. Hemoglobin and red blood cells catalyze atom transfer radical polymerization. Biomacromolecules 2013, 14, 2703–2712. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.V.; Spulber, M.; Renggli, K.; Wu, D.; Monnier, C.A.; Petri-Fink, A.; Bruns, N. Filling polymersomes with polymers by peroxidase-catalyzed atom transfer radical polymerization. Macromol. Rapid Commun. 2015, 36, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Yamamoto, K.; Kadokawa, J. Atom transfer radical polymerization of N-isopropylacrylamide by enzyme mimetic catalyst. Polymer 2013, 54, 1775–1778. [Google Scholar] [CrossRef]
- Simakova, A.; Mackenzie, M.; Averick, S.E.; Park, S.; Matyjaszewski, K. Bioinspired iron-based catalyst for atom transfer radical polymerization. Angew. Chem. 2013, 125, 12370–12373. [Google Scholar] [CrossRef]
- Zhou, H.; Jiang, W.; An, N.; Zhang, Q.; Xiang, S.; Wang, L.; Tang, J. Enzyme mimetic-catalyzed ATRP and its application in block copolymer synthesis combined with enzymatic ring-opening polymerization. RSC Adv. 2015, 5, 42728–42735. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, X.; Chen, J.; Liu, Y.; Han, H.; Ding, Y.; Li, Q.; Tang, J. Deuterohemin-peptide enzyme mimic-embedded metal-organic frameworks through biomimetic mineralization with efficient ATRP catalytic activity. ACS Appl. Mater. Interfaces 2017, 9, 26948–26957. [Google Scholar] [CrossRef]
- Enciso, A.E.; Fu, L.; Russell, A.J.; Matyjaszewski, K. A breathing atom-transfer radical polymerization: Fully oxygen tolerant polymerization inspired by aerobic respiration of cells. Angew. Chem. Int. Ed. 2018, 57, 933–936. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, L.; Matyjaszewski, K. Enzyme-deoxygenated low parts per million atom transfer radical polymerization in miniemulsion and Ab initio emulsion. ACS Macro Lett. 2018, 7, 1317–1321. [Google Scholar] [CrossRef]
- Enciso, A.E.; Fu, L.; Lathwal, S.; Olszewski, M.; Wang, Z.; Das, S.R.; Russell, A.J.; Matyjaszewski, K. Biocatalytic “Oxygen-fueled” atom transfer radical polymerization. Angew. Chem. Int. Ed. 2018, 57, 16157–16161. [Google Scholar] [CrossRef] [PubMed]
- Zhulina, E.B.; Rubinstein, M. Lubrication by polyelectrolyte brushes. Macromolecules 2014, 47, 5825–5838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milner, S.T. Polymer brushes. Science 1991, 251, 905–914. [Google Scholar] [CrossRef]
- Chen, S.; Li, L.; Zhao, C.; Zheng, J. Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer 2010, 51, 5283–5293. [Google Scholar] [CrossRef] [Green Version]
- Navarro, L.A.; Enciso, A.E.; Matyjaszewski, K.; Zauscher, S. Enzymatically degassed surface-initiated atom transfer radical polymerization with real-time monitoring. J. Am. Chem. Soc. 2019, 141, 3100–3109. [Google Scholar] [CrossRef] [PubMed]
- Divandari, M.; Pollard, J.; Dehghani, E.; Bruns, N.; Benetti, E.M. Controlling enzymatic polymerization from surfaces with switchable bioaffinity. Biomacromolecules 2017, 18, 4261–4270. [Google Scholar] [CrossRef] [Green Version]
- Nicewicz, D.A.; Nguyen, T.M. Recent applications of organic dyes as photoredox catalysts in organic synthesis. ACS Catal. 2014, 4, 355–360. [Google Scholar] [CrossRef]
- Treat, N.J.; Sprafke, H.; Kramer, J.W.; Clark, P.G.; Barton, B.E.; de Alaniz, J.R.; Fors, B.P.; Hawker, C.J. Metal-free atom transfer radical polymerization. J. Am. Chem. Soc. 2014, 136, 16096–16101. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Lamson, M.; Yan, J.; Matyjaszewski, K. Photoinduced metal-free atom transfer radical polymerization of acrylonitrile. ACS Macro Lett. 2015, 4, 192–196. [Google Scholar] [CrossRef]
- Pan, X.; Fang, C.; Fantin, M.; Malhotra, M.; So, W.Y.; Peteanu, L.A.; Isse, A.A.; Gennaro, A.; Liu, P.; Matyjaszewski, K. Mechanism of photoinduced metal-free atom transfer radical polymerization: Experimental and computational Studies. J. Am. Chem. Soc. 2016, 138, 2411–2425. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.M.; Phan, L.N.T.; Le, T.V.; Truong, T.T.; Nguyen, T.H.; Phong, M.T.; Nguyen, H.T. Phenothiazine derivative as organic photocatalyst for metal free atom transfer radical polymerization. Polymer (Korea) 2019, 43, 496–502. [Google Scholar] [CrossRef]
- Miyake, G.M.; Theriot, J.C. Perylene as an organic photocatalyst for the radical polymerization of functionalized vinyl monomers through oxidative quenching with alkyl bromides and visible light. Macromolecules 2014, 47, 8255–8261. [Google Scholar] [CrossRef]
- Allushi, A.; Jockusch, S.; Yilmaz, G.; Yagci, Y. Photoinitiated metal-free controlled/living radical polymerization using polynuclear aromatic hydrocarbons. Macromolecules 2016, 49, 7785–7792. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Cheng, Z.; Zhu, X. Metal-free photoinduced electron transfer-atom transfer radical polymerization (PET-ATRP) via a visible light organic photocatalyst. Polym. Chem. 2016, 7, 689–700. [Google Scholar] [CrossRef]
- Kutahya, C.; Aykac, F.S.; Yilmaz, G.; Yagci, Y. LED and visible light-induced metal free ATRP using reducible dyes in the presence of amines. Polym. Chem. 2016, 7, 6094–6098. [Google Scholar] [CrossRef]
- Theriot, J.C.; Lim, C.H.; Yang, H.; Ryan, M.D.; Musgrave, C.B.; Miyake, G.M. Organocatalyzed atom transfer radical polymerization driven by visible light. Science 2016, 352, 1082–1086. [Google Scholar] [CrossRef] [Green Version]
- Pearson, R.M.; Lim, C.H.; McCarthy, B.G.; Musgrave, C.B.; Miyake, G.M. Organocatalyzed atom transfer radical polymerization using N-aryl phenoxazines as photoredox catalysts. J. Am. Chem. Soc. 2016, 138, 11399–11407. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Gu, Y.; Liu, X.; Zhang, L.; Cheng, Z.; Zhu, X. Metal-free atom transfer radical polymerization of methyl methacrylate with ppm level of organic photocatalyst. Macromol. Rapid Commun. 2017, 38, 1600461. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, X.; Ma, Y.; Chen, D.; Wang, L.; Zhao, C.; Yang, W. Photoinduced controlled radical polymerization of methacrylates with benzaldehyde derivatives as organic catalysts. Polym. Chem. 2017, 8, 3574–3585. [Google Scholar] [CrossRef]
- Jia, T.; Huang, S.; Bohra, H.; Wang, M. Examining derivatives of quinacridone, diketopyrrolopyrrole and indigo as the visible-light organic photocatalysts for metal-free atom transfer radical polymerization. Dyes Pigm. 2019, 165, 223–230. [Google Scholar] [CrossRef]
- Ranger, M.; Jones, M.C.; Yessine, M.A.; Leroux, J.C. From well-defined diblock copolymers prepared by a versatile atom transfer radical polymerization method to supramolecular assemblies. J. Polym. Sci. Part A Polym. Chem. 2001, 39, 3861–3874. [Google Scholar] [CrossRef]
- Siegwart, D.J.; Oh, J.K.; Matyjaszewski, K. ATRP in the design of functional materials for biomedical applications. Prog. Polym. Sci. 2012, 37, 18–37. [Google Scholar] [CrossRef] [Green Version]
- Rosler, A.; Vandermeulen, G.W.M.; Klok, H.A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliv. Rev. 2001, 53, 95–108. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Zheng, L.S.; Guo, X.D.; Qian, Y.; Zhang, L.J. pH-sensitive micelles self-assembled from amphiphilic copolymer brush for delivery of poorly water-soluble drugs. Biomacromolecules 2011, 12, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.A.; Park, G.S.; Son, K. Amphiphilic diblock and crosslinked copolymers synthesized via metal-free atom transfer radical polymerization. Polym. Int. 2018, 67, 127–131. [Google Scholar] [CrossRef]
- Ma, M.; Li, F.; Chen, F.; Cheng, S.; Zhuo, R. Poly(ethylene glycol)-block-poly(glycidyl methacrylate) with oligoamine side chains as efficient gene vectors. Macromol. Biosci. 2010, 10, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Park, G.S.; Back, J.; Choi, E.M.; Lee, E.; Son, K. Visible light-mediated metal-free atom transfer radical polymerization with N-trifluoromethylphenyl phenoxazines. Eur. Polym. J. 2019, 117, 347–352. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.; Liu, H.; Liu, Z. SiO2@C hollow sphere anodes for lithium-ion batteries. J. Mater. Sci. Technol. 2017, 33, 239–245. [Google Scholar] [CrossRef]
- Fang, M.; Chen, Z.; Tian, Q.; Cao, Y.; Wang, C.; Liu, Y.; Fu, J.; Zhang, J.; Zhu, L.; Yang, C.; et al. Synthesis of uniform discrete cage-like nitrogen-doped hollow porous carbon spheres with tunable direct large mesoporous for ultrahigh supercapacitive performance. Appl. Surf. Sci. 2017, 425, 69–76. [Google Scholar] [CrossRef]
- Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev. 2013, 113, 5322–5363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takai-Yamashita, C.; Ishino, T.; Fuji, M.; Inoue, K. Preparation and formation mechanism of ZnO supported hollow SiO2 nanoparticle by an interfacial reaction through micropores. Colloids Surf. A. 2016, 493, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Liu, Q.; Xu, L.; Bai, L.; Wang, L.; Li, G. Photoinduced metal-free surface initiated ATRP from hollow spheres surface. Polymers 2019, 11, 599. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Li, H.; Wang, L. PH-sensitive, polymer functionalized, nonporous silica nanoparticles for Quercetin controlled release. Polymers 2019, 11, 2026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Wang, C.; Yu, J.; Wang, J.; Chu, F. Metal-free ATRP “grafting from” technique for renewable cellulose graft copolymers. Green Chem. 2019, 21, 2759–2770. [Google Scholar] [CrossRef]
- Lu, C.; Guo, X.; Wang, C.; Wang, J.; Chu, F. Integration of metal-free ATRP and Diels-Alder reaction toward sustainable and recyclable cellulose-based thermoset elastomers. Carbohydr. Polym. 2020, 242, 116404. [Google Scholar] [CrossRef]
- Chen, W.; Liao, W.; Sohn, Y.S.; Fadeev, M.; Cecconello, A.; Nechushtai, R.; Willner, I. Stimuli-responsive nucleic acid-based polyacrylamide hydrogel-coated metal-organic framework nanoparticles for controlled drug release. Adv. Funct. Mater. 2018, 28, 1705137. [Google Scholar] [CrossRef]
- Cai, G.; Wang, J.; Qian, K.; Chen, J.; Li, S.; Lee, P.S. Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv. Sci. 2017, 4, 1600190. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.L.; Mauck, R.L.; Burdick, J.A. Hydrogel design for cartilage tissue engineering: A case study with hyaluronic acid. Biomaterials 2011, 32, 8771–8782. [Google Scholar] [CrossRef] [Green Version]
- MacLean, J.L.; Morishita, K.; Liu, J. DNA stabilized silver nanoclusters for ratiometric and visual detection of Hg2+ and its immobilization in hydrogels. Biosens. Bioelectron. 2013, 48, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Abdalkarim, S.Y.H.; Yu, H.; Wang, D.; Yao, J. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose reinforced nanofifibrous membranes with ZnO nanocrystals for antibacterial wound dressings. Cellulose 2017, 24, 2925–2938. [Google Scholar] [CrossRef]
- Bai, L.; Jiang, X.; Sun, Z.; Pei, Z.; Ma, A.; Wang, W.; Chen, H.; Yang, H.; Yang, L.; Wei, D. Self-healing nanocomposite hydrogels based on modifified cellulose nanocrystals by surface-initiated photoinduced electron transfer ATRP. Cellulose 2019, 26, 5305–5319. [Google Scholar] [CrossRef]
- Sun, Y.; Li, J.; Zhao, M.; Liu, Y.; Zhang, J.; Lv, C. Preparation of block copolymers via metal-free visible-light-induced ATRP for the detection of lead ions. J. Appl. Polym. Sci. 2017, 135, 45863. [Google Scholar] [CrossRef]
- Yin, X.; Wang, L.; Zhang, X.; Zhao, H.; Cui, Z.; Fu, P.; Liu, M.; Pang, X.; Qiao, X. Synthesis of amphiphilic star-shaped block copolymers through photoinduced metal free atom transfer radical polymerization. Eur. Polym. J. 2020, 126, 109557. [Google Scholar] [CrossRef]
- Yilmaz, G. One-pot synthesis of star copolymers by the combination of metal-free ATRP and ROP processes. Polymers 2019, 11, 1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuneo, T.; Wang, X.; Shi, Y.; Gao, H. Synthesis of hyperbranched polymers via metal-free ATRP in solution and microemulsion. Macromol. Chem. Phys. 2020, 221, 2000008. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; He, J.; Zeng, Y.; Yu, C.; Zhang, F. Controllable surface-initiated metal-free atom transfer radical polymerization of methyl methacrylate on mesoporous SBA-15 via reductive quenching. Eur. Polym. J. 2020, 131, 109724. [Google Scholar] [CrossRef]
- Jiang, X.; Xi, M.; Bai, L.; Wang, W.; Yang, L.; Chen, H.; Niu, Y.; Cui, Y.; Yang, H.; Wei, D. Surface-initiated PET-ATRP and mussel-inspired chemistry for surface engineering of MWCNTs and application in self-healing nanocomposite hydrogels. Mater. Sci. Eng. C. 2020, 109, 110553. [Google Scholar] [CrossRef]
- Chen, J.; Mao, L.; Qi, H.; Xu, D.; Huang, H.; Liu, M.; Wen, Y.; Deng, F.; Zhang, X.; Wei, Y. Preparation of fluorescent cellulose nanocrystal polymer composites with thermo-responsiveness through light-induced ATRP. Cellulose 2020, 27, 743–753. [Google Scholar] [CrossRef]
Entry | ATRP | Monomer | Iron | Ligand/Additive | Initiator | Catalyst Concentration(mmol/L) | Temp. (°C) | Time (h) | Conv. (%) | Mn (g/mol) | Mw/Mn | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Normal ATRP | MMA | FeCl2 | TPP | CCl4 a | 10.0 | 80 | 30.0 | 90.0 | 5.31 × 103 | 1.41 | [26] |
2 | MMA | FeBr2 | TnBP | (MMA)2Br b | 10.0 | 80 | 5.0 | 90.0 | 1.54 × 104 | 1.42 | [34] | |
3 | MMA | FeBr2 | NHPMI | EBiB | 62.8 | 90 | 2.1 | 47.0 | 1.33 × 104 | 1.21 | [38] | |
4 | MMA | FeBr2 | DPPMP | BPN | 23.4 | 90 | 5.0 | 83.0 | 1.70 × 104 | 1.17 | [40] | |
5 | MMA | FeBr2 | DMDPE | H-(MMA)2-Br c | 10.0 | 80 | 23.0 | 92.0 | 1.16 × 104 | 1.25 | [99] | |
6 | MMA | FeCl2 | MA5-DETA | EBiB | 47.1 | 90 | 20.0 | 61.2 | 8.77 × 103 | 1.29 | [101] | |
7 | MMA | FeCl2 | DPDQMEDA | EBiB | 31.6 | 90 | 1.5 | 87.5 | 2.60 × 104 | 1.35 | [104] | |
8 | MMA | FeCl2 | IA | EBP | 18.8 | 90 | 10.0 | 89.0 | 5.41 × 104 | 1.39 | [113] | |
9 | MMA | FeBr2 | TBAOTf | EBPA | 31.4 | 60 | 16.0 | 98.0 | 1.79 × 104 | 1.20 | [125] | |
10 | MMA | FeBr2 | MIBR | EBiB | 125.4 | 60 | 7.3 | 65.3 | 8.60 × 103 | 1.16 | [127] | |
11 | styrene | FeBr2 | TnBA | PEBr | 87.3 | 110 | 5.0 | 82.0 | 9.60 × 103 | 1.13 | [25] | |
12 | styrene | FeCl2 | acetic acid | CCl4 a | 43.5 | 120 | 23.0 | 75.0 | 1.47 × 104 | 1.46 | [35] | |
13 | styrene | FeCl2 | PMDETA | PECl | 43.5 | 120 | 24.0 | 65.0 | 1.51 × 104 | 1.62 | [37] | |
14 | styrene | FeBr2 | TDA | PEBr | 43.5 | 110 | 18.0 | 80.0 | 1.74 × 104 | 1.20 | [39] | |
15 | styrene | FeBr2 | DPPMP | PEBr | 87.0 | 80 | 24.0 | 67.0 | 6.95 × 103 | 1.41 | [40] | |
16 | styrene | FeCl2 | Me3TACN | PECl | 5.0 | 120 | 20.0 | 76.0 | 2.80 × 104 | 1.20 | [42] | |
17 | styrene | FeBr2 | (i-Pr)3TACN | PECl | 34.9 | 120 | 4.0 | 95.0 | 2.60 × 104 | 1.31 | [43] | |
18 | styrene | FeBr2 | dNbpy | PEBr | 34.9 | 110 | 21.0 | 64.0 | 6.47 × 103 | 1.27 | [103] | |
19 | styrene | FeBr2 | DPPP | PEBr | 87.3 | 110 | 8.0 | 37.0 | 5.20 × 103 | 1.42 | [106] | |
20 | styrene | FeCl2 | SA | BEB d | 72.5 | 70 | 3.0 | 80.0 | 6.00 × 103 | 1.30 | [115] | |
21 | Normal ATRP | styrene | FeCl2 | EDTA | PEBr | 5.6 | 50 | 0.5 | 32.0 | 3.10 × 103 | 1.20 | [122] |
22 | MA | FeBr2 | TBPBr | EBP | 47.7 | 90 | 23.2 | 32.0 | 6.40 × 103 | 1.23 | [32] | |
23 | MA | Fe(Cp)I(CO)2 | Al(Oi-Pr)3 | (CH3)2C(CO2Et)I | 40.0 | 60 | 80.0 | 93.0 | 1.21 × 104 | 1.19 | [33] | |
24 | BA | FeBr2 | (cyclopentyl)3TACN | EBiB | 27.8 | 100 | 20.0 | 92.0 | 2.40 × 104 | 1.24 | [44] | |
25 | PEGMA | FeBr2 | TMPP | H-(MMA)2-Br c | 5.0 | 60 | 3.0 | 46.0 | 2.03 × 104 | 1.14 | [107] | |
26 | Reverse ATRP | MMA | FeCl3 | TPP | AIBN | 55.4 | 90 | 8.0 | 76.1 | 1.56 × 105 | 1.34 | [109] |
27 | MMA | FeCl3 | TPP | AIBN | 29.0 | 85 | 2.0 | 85.0 | 7.50 × 104 | 1.16 | [45] | |
28 | MMA | FeCl3 | TPP | TPED | 30.4 | 95 | 12.0 | 99.1 | 1.72 × 105 | 1.13 | [46] | |
29 | MMA | FeCl3 | pyromellitic acid | AIBN | 25.1 | 100 | 6.0 | 88.6 | 2.78 × 104 | 1.28 | [48] | |
30 | MMA | FeCl3 | PDA 3 | AIBN | 31.4 | 100 | 18.0 | 93.0 | 2.16 × 104 | 1.32 | [121] | |
31 | MMA | Fe(S2CN(C4H9)2)3 | / | V-50 | 4.7 | 90 | 72.0 | 61.8 | 3.32 × 104 | 1.34 | [49] | |
32 | styrene | FeCl3 | BOX | TPED | 23.3 | 120 | 20.0 | N/A | 2.10 × 104 | 1.15 | [50] | |
33 | SMA | [Fe(DMF)6](ClO4)3 | bpy | AIBN | 1.0 | 80 | N/A | N/A | 1.48 × 105 | 1.36 | [53] | |
34 | HMA | [Fe(DMF)6](ClO4)3 | bpy | AIBN | 20.0 | 80 | N/A | N/A | 7.75 × 104 | 1.24 | [54] | |
35 | HEMA | FeCl3 | TPP | BPO | N/A | 80 | 24.0 | 90.0 | 2.37 × 104 | N/A | [55] | |
36 | AN | FeCl3 | TPP | TPED | 15.0 | 70 | 6.0 | 48.3 | 5.32 × 103 | 1.16 | [110] | |
37 | AN | FeCl3 | IDA | AIBN | 12.0 | 60 | 4.0 | 38.0 | 5.20 × 103 | 1.16 | [118] | |
38 | AN | FeCl3 | SA | AIBN | 6.3 | 60 | 4.0 | 45.0 | 1.80 × 104 | 1.17 | [119] | |
39 | DA | FeCl3 | bpy | AIBN | 1.0 | 80 | N/A | 50.0 | 1.20 × 104 | 1.46 | [57] | |
40 | MAN | FeCl3 | IA | AIBN | 58.1 | 75 | 3.0 | 52.0 | 5.59 × 103 | 1.13 | [58] | |
41 | MAN | FeCl3 | [mim][AT] | AIBN | 39.7 | 70 | 2.0 | 67.9 | 7.56 × 103 | 1.23 | [128] | |
42 | ICAR ATRP | MMA | FeCl3 | TPP | BMPB2 | 7.5 | 60 | 5.5 | 40.8 | 2.44 × 104 | 1.24 | [61] |
43 | MMA | FeCl3 | SA | EBiB | 0.6 | 90 | 36.0 | 36.4 | 2.12 × 104 | 1.22 | [62] | |
44 | MMA | FeBr3 | TBABr | EBPA | 0.6 | 60 | 48.0 | 51.0 | 9.10 × 103 | 1.38 | [63] | |
45 | MMA | FeBr3(HIDipp) | TBABr | EBPA | 0.2 | 60 | 24.0 | 64.0 | 1.29 × 104 | 1.20 | [65] | |
46 | MMA | FeCl3 | HMTA | CCl4 | N/A | 60 | 5.0 | 71.1 | 3.55 × 104 | 1.25 | [102] | |
47 | styrene | FeCl3 | TDA | PEBr | 14.5 | 110 | 96.0 | 26.2 | 7.85 × 103 | 1.12 | [60] | |
48 | styrene | FeBr3 | TBABr | EBPA | 0.4 | 90 | 24.0 | 70.0 | 1.40 × 104 | 1.15 | [64] | |
49 | AGET ATRP | MMA | FeCl3 | IDA | EBiB | 28.0 | 90 | 7.0 | 76.0 | 2.50 × 104 | 1.30 | [68] |
50 | MMA | FeCl3 | TBABr | EBiB | 18.8 | 90 | 7.0 | 55.8 | 3.45 × 104 | 1.21 | [69] | |
51 | MMA | FeCl3 | TPP | EBiB | 18.8 | 90 | 14.0 | 44.3 | 2.18 × 104 | 1.25 | [70] | |
52 | MMA | FeBr3 | DMF | EBPA | 11.8 | 60 | 10.0 | 35.3 | 3.14 × 104 | 1.23 | [129] | |
53 | MMA | FeBr3 | TnBP | EBiB | 23.4 | 80 | 2.5 | 84.0 | 2.02 × 104 | 1.23 | [74] | |
54 | MMA | FeBr3 | TMP | EBiB | 23.4 | 80 | 2.0 | 54.0 | 1.11 × 104 | 1.26 | [74] | |
55 | MMA | FeBr3 | DPPP | EBiB | 23.4 | 80 | 9.0 | 87.0 | 1.75 × 104 | 1.18 | [74] | |
56 | MMA | FeBr3 | BDPPM | EBiB | 23.4 | 80 | 1.0 | 71.0 | 7.30 × 103 | 1.23 | [74] | |
57 | MMA | FeBr3 | BDPPE | EBiB | 23.4 | 80 | 4.0 | 66.0 | 6.80 × 103 | 1.49 | [74] | |
58 | MMA | FeBr3 | BDPPP | EBiB | 23.4 | 80 | 4.0 | 92.0 | 9.40 × 103 | 1.66 | [74] | |
59 | MMA | FeCl3 | TBABr | EBiB | 37.7 | 60 | 7.0 | 27.4 | 9.11 × 103 | 1.49 | [76] | |
60 | MMA | FeCl3 | [Bmim][CO3] | EBiB | 37.7 | 70 | 18.0 | 16.7 | 6.33 × 103 | 1.33 | [77] | |
61 | MMA | FeCl3 | [Bmim][PO4] | EBiB | 37.7 | 90 | 18.0 | 43.1 | 1.12 × 104 | 1.42 | [77] | |
62 | MMA | FeCl3 | [Bmim][HCO3] | EBiB | 37.7 | 90 | 18.0 | 31.9 | 9.24 × 103 | 1.44 | [77] | |
63 | AGET ATRP | MMA | FeCl3 | BMIMPF6 | EBiB | 12.6 | 90 | 4.0 | 46.2 | 2.31 × 104 | 1.23 | [79] |
64 | styrene | FeCl3 | TDA | BMPB | 13.1 | 110 | 8.6 | 65.4 | 1.49 × 104 | 1.15 | [72] | |
65 | styrene | FeBr3 | TnBA | BEB d | 21.8 | 110 | 2.0 | 68.0 | 2.67 × 104 | 1.20 | [73] | |
66 | styrene | FeCl3 | TBABr | PEBr | 17.5 | 110 | 24.0 | 46.7 | 9.10 × 103 | 1.28 | [75] | |
67 | tBS | FeBr3 | TnBA | BEB d | 54.6 | 110 | 2.0 | 51.0 | 1.19 × 104 | 1.33 | [73] | |
68 | MS | FeBr3 | TnBA | BEB d | 38.0 | 110 | 2.0 | 61.0 | 1.28 × 104 | 1.38 | [73] | |
69 | AS | FeBr3 | TnBA | BEB d | 58.2 | 110 | 2.0 | 85.0 | 1.36 × 104 | 1.32 | [73] | |
70 | GAMA ATRP | MMA | FeBr3 | DPPP | EBiB | 4.7 | 80 | 4.0 | 42.0 | 5.10 × 103 | 1.16 | [80] |
71 | MMA | FeBr3 | DPPP | EBiB | 23.4 | 80 | 6.0 | 57.0 | 1.24 × 104 | 1.15 | [81] | |
72 | MMA | FeCl3 | TPP | EBiB | 47.1 | 80 | 5.0 | 62.0 | 2.62 × 104 | 1.13 | [82] | |
73 | MMA | FeCl3 | TnBA | (MMA)2-Cl e | 10.0 | 100 | 76.0 | 91.0 | 9.70 × 103 | 1.26 | [85] | |
74 | MMA | FeBr3 | TPP | / | 47.1 | 80 | 0.5 | 11.0 | 6.01 × 104 | 1.21 | [87] | |
75 | styrene | FeBr3 | DPPP | PEBr | 87.0 | 110 | 12.0 | 54.0 | 6.75 × 103 | 1.12 | [80] | |
76 | styrene | FeCl3 | DPPDMA | PECl | 87.3 | 110 | 15.0 | 39.0 | 4.61 × 103 | 1.10 | [83] | |
77 | styrene | FeCl3 | TnBP | (MMA)2-Cl e | 10.0 | 100 | N/A | 91.0 | 1.10 × 104 | 1.19 | [84] | |
78 | styrene | FeBr3 | TTMPP | EBiB | 21.8 | 100 | 21.0 | 44.0 | 8.10 × 103 | 1.11 | [86] | |
79 | MA | FeBr3 | DPPP | EBiB | 55.5 | 80 | 24.0 | 40.0 | 4.30 × 103 | 1.18 | [80] | |
80 | SARA ATRP | MMA | FeBr3/Fe0 | TBABr | EBPA | 0.6 | 60 | 45.0 | 76.0 | 1.64 × 104 | 1.18 | [63] |
81 | MA | CuBr2/Fe0 | Me6TREN | MBP | 0.7 | 25 | 72.0 | 88.0 | 1.78 × 104 | 1.06 | [88] | |
82 | MA | CuBr2/Fe0 | Me6TREN | EBiB | N/A | 30 | 5.0 | 77.0 | 1.54 × 104 | 1.08 | [90] | |
83 | DMAEMA | CuBr2/Fe0 | PMDETA | EBiB | 4.4 | 25 | N/A | 93.0 | 1.40 × 104 | 1.13 | [89] |
Entry | Monomer | Catalyst | Reducing Agent/Additive | Initiator | Catalyst Concentration | Temp. (°C) | Time (h) | Conv. (%) | Mn (g/mol) | Mw/Mn | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | PEGMA | LTV | VC | BPN | 4.00 mg/mL | 40 | 0.5 | 28.0 | 1.71 × 105 | 1.94 | [131] |
2 | PEGMA | LTV | VC | EBiB | 4.00 mg/mL | 40 | 1.0 | 20.0 | 2.72 × 105 | 2.43 | [131] |
3 | PEGMA | LTV | VC | EIAc | 4.00 mg/mL | 40 | 22.0 | 15.0 | 4.32 × 105 | 2.27 | [131] |
4 | PEGMA | Hb | VC | HEBiB | 2.50 mg/mL | 25 | 4.0 | 48.3 | 5.00 × 103 | 1.14 | [134] |
5 | PEGMA | DhHP-6 | sodium L-ascorbate | EBiB | 1.40 mg/mL | 35 | 2.0 | 80.7 | 6.02 × 103 | 1.08 | [138] |
6 | PEGMA | DhHP-6@ZIF-8 | L-ascorbate | BPN | N/A | 30 | 4.0 | 85.5 | 8.20 × 103 | 1.10 | [139] |
7 | PEGA | CBL | VC | BPN | 8.00 mg/mL | 40 | 8.0 | 81.0 | 1.18 × 104 | 1.66 | [132] |
8 | PEGA | CBL | VC | EBiB | 8.00 mg/mL | 40 | 8.0 | 50.0 | 9.81 × 103 | 1.61 | [132] |
9 | PEGA | LTV | VC | BPN | 4.00 mg/mL | 40 | N/A | 76.0 | 1.10 × 104 | 1.63 | [132] |
10 | PEGA | HRP | VC | BPN | 0.80 mg/mL | 40 | N/A | 62.0 | 9.63 × 103 | 1.58 | [132] |
11 | PEGA | Hb | VC | HEBiB | 2.50 mg/mL | 25 | 6.0 | 56.0 | 6.60 × 103 | 1.41 | [134] |
12 | NIPAAm | HRP | L-ascorbate | HEBiB | N/A | 25 | 24.0 | 48.0 | 9.99 × 104 | 1.44 | [133] |
13 | NIPAAm | Hb | VC | HEBiB | 2.95 mg/mL | 25 | 4.0 | 60.1 | 2.93 × 105 | 1.73 | [134] |
14 | NIPAAm | hematin | sodium L-ascorbate | EBiB | 2.53 mg/mL | 25 | 24.0 | 80.0 | 3.18 × 104 | 1.80 | [136] |
15 | OEOMA | mesohemin-(MPEG550)2 | sodium L-ascorbate | PEG2000-Br a | 2.00 mmol/L | 30 | 6.0 | 60.0 | 6.30 × 104 | 1.19 | [137] |
16 | OEOMA | hemin | sodium L-ascorbate | PEG2000-Br a | 2.00 mmol/L | 30 | 18.0 | 50.0 | 6.00 × 104 | 1.32 | [137] |
17 | OEOMA | HRP | acetylacetonate | EBPA | 270.00 nmol/L | 37 | 0.5 | 58.0 | 3.84 × 104 | 1.13 | [142] |
18 | BMA | GOx | sodium pyruvate | EBPA | 2.00 μmol/L | 44 | 6.5 | 89.0 | 3.24 × 104 | 1.16 | [141] |
19 | NIPAAm | Hb | sodium nitrate | BIBB | N/A | 25 | 16.7 | N/A | N/A | N/A | [147] |
Entry | Monomer | Catalyst | Light Source | Initiator | Catalyst Concentration (mmol/L) | Temp. (°C) | Time (h) | Conv. (%) | Mn (g/mol) | Mw/Mn | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | BnMA | Ph-PTZ | UV light | EBPA | 5.9 | 25 | 9.0 | 70.1 | 1.40 × 104 | 1.36 | [149] |
2 | AN | Ph-PTZ | UV light | EBPA | 5.0 | N/A | 7.0 | 63.0 | 1.21 × 104 | 1.42 | [150] |
3 | AN | 4-MeOPh-PTZ | UV light | EBPA | 5.0 | N/A | 6.0 | 33.0 | 7.49 × 103 | 1.69 | [150] |
4 | AN | Nap-PTZ | UV light | EBPA | 5.0 | N/A | 15.0 | 42.0 | 8.14 × 103 | 1.62 | [150] |
5 | MMA | Ph-PTZ | UV light | EBPA | 4.7 | 25 | 4.0 | 16.0 | 2.07 × 103 | 1.50 | [151] |
6 | MMA | Ph-PTZ | UV light | EBiB | 4.7 | 25 | 4.0 | 20.0 | 3.84 × 103 | 1.79 | [151] |
7 | MMA | Nap-PTZ | UV light | EBPA | 4.7 | 25 | 4.0 | 10.0 | 1.60 × 103 | 1.40 | [151] |
8 | MMA | PDPA | UV light | PhBMP | 3.1 | 25 | 24.0 | 94.6 | 1.17 × 104 | 1.46 | [152] |
9 | MMA | perylene | natural sunlight | EBPA | 5.4 | N/A | 10.0 | 59.2 | 4.12 × 104 | 1.29 | [153] |
10 | MMA | anthracene | UV light | EBP | 47.1 | N/A | 2.0 | 10.1 | 8.70 × 103 | 1.41 | [154] |
11 | MMA | erythrosin B | visible light | EBP | 3.1 | 25 | 2.0 | 20.0 | 9.00 × 104 | 1.20 | [156] |
12 | MMA | phenN-CF3 | white LED | EBPA | 9.4 | N/A | 8.0 | 98.4 | 1.53 × 104 | 1.17 | [157] |
13 | MMA | 4CzIPN | blue LED | EBPA | 0.1 | 25 | 3.0 | 90.0 | 1.91 × 104 | 1.50 | [159] |
14 | MMA | p-anisaldehyde | CFL bulbs | CF3(CF2)5-I | N/A | N/A | 46.0 | 77.9 | 3.04 × 104 | 1.47 | [160] |
15 | MMA | TBOC-QA | blue LED | EBPA | 3.8 | N/A | 10.0 | 66.3 | 1.54 × 104 | 1.56 | [161] |
16 | DMAEMA | PDPA | UV light | PhBMP | 3.1 | 25 | 24.0 | 80.2 | 1.35 × 105 | 1.36 | [152] |
17 | HEMA | PDPA | UV light | PhBMP | 3.1 | 25 | 24.0 | 51.0 | 7.05 × 103 | 1.48 | [152] |
18 | DEAEMA | Ph-PTZ | 380 nm LED light | EBiB | 3.8 | 25 | 6.0 | 48.2 | 3.98 × 103 | 1.47 | [166] |
19 | GMA | Ph-PTZ | 380 nm LED light | EBiB | 3.8 | 25 | 6.0 | 17.4 | 2.14 × 103 | 1.60 | [166] |
20 | AMA | Ph-PTZ | 380 nm LED light | EBiB | 3.8 | 25 | 6.0 | 11.1 | 2.01 × 103 | 1.50 | [166] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, M.; Cui, X.; Zhu, W.; Tang, H. Development of Environmentally Friendly Atom Transfer Radical Polymerization. Polymers 2020, 12, 1987. https://doi.org/10.3390/polym12091987
Yuan M, Cui X, Zhu W, Tang H. Development of Environmentally Friendly Atom Transfer Radical Polymerization. Polymers. 2020; 12(9):1987. https://doi.org/10.3390/polym12091987
Chicago/Turabian StyleYuan, Ming, Xuetao Cui, Wenxian Zhu, and Huadong Tang. 2020. "Development of Environmentally Friendly Atom Transfer Radical Polymerization" Polymers 12, no. 9: 1987. https://doi.org/10.3390/polym12091987
APA StyleYuan, M., Cui, X., Zhu, W., & Tang, H. (2020). Development of Environmentally Friendly Atom Transfer Radical Polymerization. Polymers, 12(9), 1987. https://doi.org/10.3390/polym12091987