Facile Synthesis of Mixed-Mode Weak Anion-Exchange Microspheres via One-Step Pickering Emulsion Polymerization for Efficient Simultaneous Extraction of Strongly and Weakly Acidic Drugs from Reservoir Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of Mixed-Mode WAX Microspheres
2.3. Sample Collection
2.4. Characterization of the Sorbent
2.5. Chromatographic Analysis
3. Results and Discussion
3.1. Preparation of the Poly(DEAEMA-co-DVB) Microspheres
Characterization of the Poly(DEAEMA-co-DVB) Microspheres
3.2. Optimization of SPE Procedures
3.2.1. Effect of Sample pH
3.2.2. Effect of Elution Volume
3.2.3. Sample Breakthrough Volume
3.3. Validation of the WAX Mixed-Mode SPE/HPLC-UV Method
3.4. Analysis of Real Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fu, X.; Liao, Y.; Liu, H. Sample preparation for pharmaceutical analysis. Anal. Bioanal. Chem. 2005, 381, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Qiao, Y.; Xing, J. Ternary mixed-mode silica sorbent of solid-phase extraction for determination of basic, neutral and acidic drugs in human serum. Anal. Bioanal. Chem. 2018, 410, 3731–3742. [Google Scholar] [CrossRef]
- Augusto, F.; Hantao, L.W.; Mogollón, N.G.S.; Braga, S.C.G.N. New materials and trends in sorbents for solid-phase extraction. Trac Trends Anal. Chem. 2013, 43, 14–23. [Google Scholar] [CrossRef]
- Plotka-Wasylka, J.; Szczepanska, N.; Miguel, D.L.G.; Namiesnik, J. Modern trends in solid phase extraction: New sorbent media. Trac Trends Anal. Chem. 2016, 77, 23–43. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, Z.; Lv, S.; Du, Z.; Liu, X. Simultaneous determination of 16 polycyclic aromatic hydrocarbons in reclaimed water using solid-phase extraction followed by ultra-performance convergence chromatography with photodiode array detection. J. Sep. Sci. 2016, 39, 993–999. [Google Scholar] [CrossRef]
- Picó, Y.; Fernández, M.; Ruiz, M.J.; Font, G. Current trends in solid-phase-based extraction techniques for the determination of pesticides in food and environment. J. Biochem. Biophys. Methods 2008, 70, 117–131. [Google Scholar] [CrossRef]
- Clarke, S.J.; Rivory, L.P.; Li, K.M. Solid-phase extraction (SPE) techniques for sample preparation in clinical and pharmaceutical analysis: A brief overview. Curr. Pharm. Anal. 2006, 2, 95–102. [Google Scholar]
- Calvo, M.V.; Ramos, L.; Fontecha, J. Determination of cholesterol oxides content in milk products by solid phase extraction and gas chromatography-mass spectrometry. J. Sep. Sci. 2003, 26, 927–931. [Google Scholar] [CrossRef] [Green Version]
- Bing, S.; Dan, D.; Wu, Y.; Hu, J.; Meng, J.; Tu, X. Simultaneous determination of 17 sulfonamide residues in porcine meat, kidney and liver by solid-phase extraction and liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2005, 546, 174–181. [Google Scholar]
- Leitner, A.; Zöllner, P.; Lindner, W. Determination of the metabolites of nitrofuran antibiotics in animal tissue by high-performance liquid chromatography–tandem mass spectrometry. Food Sci. 2008, 939, 49–58. [Google Scholar] [CrossRef]
- Chen, H.C.; Wang, S.P.; Ding, W.H. Determination of fluorescent whitening agents in environmental waters by solid-phase extraction and ion pair liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2006, 1102, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Stubbings, G.; Tarbin, J.; Cooper, A.; Sharman, M.; Bigwood, T.; Robb, P. A multi-residue cation-exchange clean up procedure for basic drugs in produce of animal origin. Anal. Chim. Acta 2005, 547, 262–268. [Google Scholar] [CrossRef]
- Jacobsen, A.M.; Halling-Sorensen, B.; Ingerslev, F.; Steen, H.H. Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2004, 1038, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Nazario, C.E.D.; Lancas, F.M. Analysis of fluoxetine and norfluoxetine in human plasma by HPLC-UV using a high purity C18 silica-based SPE sorbent. Anal. Methods 2014, 6, 4181–4187. [Google Scholar] [CrossRef]
- Núria, F.; Rosa, M.M.; Borrull, F.; Cormack, P.A.G. Mixed-mode ion-exchange polymeric sorbents: Dual-phase materials that improve selectivity and capacity. Trac Trends Anal. Chem. 2010, 29, 765–779. [Google Scholar]
- Cai, X.; Guo, Z.; Xue, X.; Xu, J.; Zhang, X.; Liang, X. Two-dimensional liquid chromatography separation of peptides using reversed-phase/weak cation-exchange mixed-mode column in first dimension. J. Chromatogr. A 2012, 1228, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guo, Z.; Sheng, Q.; Xue, X.; Liang, X. Sequential elution of multiply and singly phosphorylated peptides with polar-copolymerized mixed-mode RP18/SCX material. Analyst 2012, 137, 2774–2776. [Google Scholar] [CrossRef] [PubMed]
- Núria, F.; Cormack, P.A.G.; Sherrington, D.C.; Rosa, M.M.; Borrull, F. Weak anion-exchange hypercrosslinked sorbent in on-line solid-phase extraction–liquid chromatography coupling to achieve automated determination with an effective clean-up. J. Chromatogr. A 2010, 1217, 2855–2861. [Google Scholar]
- Hu, P.; Zhang, H.Y.; Mao, D.Y.; Ning, F.H.; Wang, R.J.; Wang, Y.R. Determination of homovanilic acid in human urine by weak anion-exchange hypercrosslinked polymer resin-solid phase extraction-high performance liquid chromatography-ultraviolet detection method. Chin. J. Anal. Chem. 2012, 40, 1175–1180. [Google Scholar] [CrossRef]
- Huang, C.; Li, Y.; Yang, J.; Peng, J.; Jin, J.; Dhanjai; Wang, J.; Chen, J. Preparation of a reversed-phase/anion-exchange mixed-mode spherical sorbent by pickering emulsion polymerization for highly selective solid-phase extraction of acidic pharmaceuticals from wastewater. J. Chromatogr. A 2017, 1521, 1–9. [Google Scholar] [CrossRef]
- He, J.; Ma, Z.; Yang, Y.; Hemar, Y.; Zhao, T. Extraction of tetracycline in food samples using biochar microspheres prepared by a pickering emulsion method. Food Chem. 2020, 329, 127162. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, Y.; Huang, C.; Jiao, Y.; Chen, J. A phenolphthalein-dummy template molecularly imprinted polymer for highly selective extraction and clean-up of bisphenol a in complex biological, environmental and food samples. Polymers 2018, 10, 1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
SBET (m2 g−1) | Pore Volume (cm3 g−1) | Pore Size (nm) | |
---|---|---|---|
Poly(DVB-co-DEAEMA) | 575 | 0.94 | 10–30 |
Pharmaceutical | CAS Number | Structure | pKa | Log P | Water Solubility (mg L−1) |
---|---|---|---|---|---|
niflumic acid | 4394-00-7 | 1.68 | 4.43 | 19 | |
naproxen | 22204-53-1 | 4.15 | 3.18 | 15.9 | |
diflunisal | 22494-42-4 | 3.3 | 4.44 | 14.5 | |
diclofenac | 15307-86-5 | 4.15 | 4.51 | 2.37 | |
ketoprofen | 22071-15-4 | 4.45 | 3.12 | 51 | |
mefenamic acid | 61-68-7 | 4.2 | 5.12 | 20 |
Analyte | Liner Range (μg L−1) | Correlation of Determination (R2) | LOD a (μg L−1) | LOQ a (μg L−1) | Intra-Day RSD (%, n = 3) | Inter-Day RSD (%, n = 3) |
---|---|---|---|---|---|---|
naproxen | 0.01–10.0 | 0.995 | 0.011 | 0.032 | 0.3 | 3.3 |
ketoprofen | 0.05–10.0 | 0.994 | 0.025 | 0.044 | 0.5 | 2.7 |
diflunisal | 0.05–10.0 | 0.996 | 0.018 | 0.076 | 0.9 | 3.1 |
mefenamic acid | 0.05–10.0 | 0.995 | 0.016 | 0.088 | 0.9 | 2.8 |
diclofenac | 0.05–10.0 | 0.997 | 0.008 | 0.006 | 1.3 | 4.0 |
niflumic acid | 0.05–10.0 | 0.997 | 0.002 | 0.003 | 2.1 | 3.3 |
Analyte | Spiked Levels a | |||
---|---|---|---|---|
(1) | (2) | |||
Eluate b | RSD% | Eluate | RSD% | |
naproxen | 101.3 | 2.7 | 92.0 | 3.6 |
ketoprofen | 93.3 | 1.8 | 101.7 | 4.4 |
diflunisal | 89.5 | 7.7 | 98.4 | 5.6 |
mefenamic acid | 92.4 | 1.4 | 93.6 | 7.2 |
diclofenac | 96.6 | 2.2 | 88.3 | 2.7 |
niflumic acid | 90.6 | 4.6 | 90.1 | 3.5 |
Analyte | Poly(DEAEMA-co-DVB) a | Oasis MAX a | C18 a |
---|---|---|---|
naproxen | 90 | 93 | 70 |
ketoprofen | 98 | 93 | 73 |
diflunisal | 92 | 90 | 66 |
mefenamic acid | 89 | 88 | 83 |
diclofenac | 88 | 90 | 62 |
niflumic acid | 93 | 7 | 69 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gou, X.; Li, Y.; Huang, C.; Zhu, X.; Chen, J. Facile Synthesis of Mixed-Mode Weak Anion-Exchange Microspheres via One-Step Pickering Emulsion Polymerization for Efficient Simultaneous Extraction of Strongly and Weakly Acidic Drugs from Reservoir Water. Polymers 2020, 12, 2089. https://doi.org/10.3390/polym12092089
Gou X, Li Y, Huang C, Zhu X, Chen J. Facile Synthesis of Mixed-Mode Weak Anion-Exchange Microspheres via One-Step Pickering Emulsion Polymerization for Efficient Simultaneous Extraction of Strongly and Weakly Acidic Drugs from Reservoir Water. Polymers. 2020; 12(9):2089. https://doi.org/10.3390/polym12092089
Chicago/Turabian StyleGou, Xiaoyi, Yun Li, Chaonan Huang, Xiuhua Zhu, and Jiping Chen. 2020. "Facile Synthesis of Mixed-Mode Weak Anion-Exchange Microspheres via One-Step Pickering Emulsion Polymerization for Efficient Simultaneous Extraction of Strongly and Weakly Acidic Drugs from Reservoir Water" Polymers 12, no. 9: 2089. https://doi.org/10.3390/polym12092089
APA StyleGou, X., Li, Y., Huang, C., Zhu, X., & Chen, J. (2020). Facile Synthesis of Mixed-Mode Weak Anion-Exchange Microspheres via One-Step Pickering Emulsion Polymerization for Efficient Simultaneous Extraction of Strongly and Weakly Acidic Drugs from Reservoir Water. Polymers, 12(9), 2089. https://doi.org/10.3390/polym12092089