Three-Dimensional Porous Graphene Supported MoS2 Nanoflower Prepared by a Facile Solvothermal Method with Excellent Rate Performance and Sodium-Ion Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Preparation of the MoS2 Nanoflower Particles
2.2. The Preparation of MoS2/3DG Composites
2.3. Characterizations
3. Results and Discussion
3.1. Structure and Morphology Analysis of MoS2 and MoS2/3DG Composites
3.2. Electrochemical Analysis of MoS2 and MoS2/3DG Composites
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fang, Y.; Chen, Z.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Recent progress in iron-based electrode materials for grid-scale sodium-ion batteries. Small 2018, 14, 1703116. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, W.; Wang, S.; Miao, Z.; Liu, H.K.; Chou, S. Structural design of anode materials for sodium-ion batteries. J. Mater. Chem. A 2018, 6, 6183–6205. [Google Scholar] [CrossRef] [Green Version]
- Jin, T.; Han, Q.; Wang, Y.; Jiao, L. 1D nanomaterials: Design, synthesis, and applications in sodium–ion batteries. Small 2018, 14, 1703086. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Ao, Z.; Su, D.; Zhang, J.; Wang, G. MoS2/Graphene Composite Anodes with Enhanced Performance for Sodium-Ion Batteries: The Role of the Two-Dimensional Heterointerface. Adv. Funct. Mater. 2015, 25, 1393–1403. [Google Scholar] [CrossRef]
- Wang, W.; Shi, L.; Lan, D.; Li, Q. Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration. J. Power Sources 2018, 377, 1–6. [Google Scholar] [CrossRef]
- Liu, K.; Tan, S.; Moon, J.; Jafta, C.J.; Li, C.; Kobayashi, T.; Lyu, H.; Bridges, C.A.; Men, S.; Guo, W. Insights into the Enhanced Cycle and Rate Performances of the F-Substituted P2-Type Oxide Cathodes for Sodium-Ion Batteries. Adv. Energy Mater. 2020, 10, 2000135. [Google Scholar] [CrossRef]
- Xie, F.; Xu, Z.; Jensen, A.C.; Au, H.; Lu, Y.; Araullo-Peters, V.; Drew, A.J.; Hu, Y.S.; Titirici, M.M. Hard–soft carbon composite anodes with synergistic sodium storage performance. Adv. Funct. Mater. 2019, 29, 1901072. [Google Scholar] [CrossRef]
- Gao, X.; An, Y.; Zhang, W.; Yu, M.; Ci, L.; Feng, J. Self-supporting soft carbon fibers as binder-free and flexible anodes for high-performance sodium-ion batteries. Mater. Technol. 2018, 33, 810–814. [Google Scholar] [CrossRef]
- Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-Ion batteries. Adv. Funct. Mater. 2011, 21, 3859–3867. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.S.; Titirici, M.M.; Chen, L.; Huang, X. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600659. [Google Scholar] [CrossRef]
- Cao, B.; Liu, H.; Xu, B.; Lei, Y.; Chen, X.; Song, H. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. J. Mater. Chem. A 2016, 4, 6472–6478. [Google Scholar] [CrossRef]
- Yoshio, M.; Wang, H.; Fukuda, K.; Umeno, T.; Abe, T.; Ogumi, Z. Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere. J. Mater. Chem. 2004, 14, 1754–1758. [Google Scholar] [CrossRef]
- Jache, B.; Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. Int. Ed. 2014, 53, 10169–10173. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Yin, Y.X.; Guo, Y.G.; Wan, L.J. A Sandwich-Like Hierarchically Porous Carbon/Graphene Composite as a High-Performance Anode Material for Sodium-Ion Batteries. Adv. Energy Mater. 2014, 4, 1079–1098. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, L.; Zhang, K.; Wang, J.; Cheng, F.; Tao, Z.; Chen, J. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem. Int. Ed. 2015, 53, 12794–12798. [Google Scholar] [CrossRef]
- Wang, Y.X.; Chou, S.L.; Wexler, D.; Liu, H.K.; Dou, S.X. High-Performance Sodium-Ion Batteries and Sodium-Ion Pseudocapacitors Based on MoS2/Graphene Composites. Chemistry 2014, 20, 9607–9612. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Makaryan, T.; Zhao, M.; Van Aken, K.L.; Gogotsi, Y.; Wang, G. MoS2 Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodium-Ion Batteries. Adv. Energy Mater. 2016, 6, 1502161–1502168. [Google Scholar] [CrossRef]
- Sahu, T.S.; Li, Q.; Wu, J.; Dravid, V.P.; Mitra, S. Exfoliated MoS2 nanosheets confined in 3-D hierarchical carbon nanotube@ graphene architecture with superior sodium-ion storage. J. Mater. Chem. A 2017, 5, 355–363. [Google Scholar] [CrossRef]
- Sahu, T.S.; Mitra, S. Exfoliated MoS2 sheets and reduced graphene oxide-an excellent and fast anode for sodium-ion battery. Sci. Rep. 2015, 5, 12571. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2013, 7, 209–231. [Google Scholar] [CrossRef]
- Wu, M.; Liu, C.; Xu, H.; Shen, J.; Yang, Y. Carbon Nanorod−MoS2 Core−Sheath Heterostructure and Its Electrochemical Properties over Various Electrochemical Windows. Chemelectrochem 2018, 5, 1288–1296. [Google Scholar] [CrossRef]
- Han, S.; Zhao, Y.; Tang, Y.; Tan, F.; Huang, Y.; Feng, X.; Wu, D. Ternary MoS2/SiO2/graphene hybrids for high-performance lithium storage. Carbon 2015, 81, 203–209. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, Q.; Zhang, N.; Lei, K.; Li, F.; Chen, J. Facile Spraying Synthesis and High-Performance Sodium Storage of Mesoporous MoS2/C Microspheres. Adv. Funct. Mater. 2016, 26, 911–918. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, J.; Tan, T.; Zhao, Y.; Liu, N.; Li, H. A 3D MoS2/Graphene Microsphere Coated Separator for Excellent Performance Li-S Batteries. Materials 2018, 11, 2064–2077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seung, H.; Choi, Y.N.; Ko, J.K.; Lee, Y.C. 3D MoS2–Graphene Microspheres Consisting of Multiple Nanospheres with Superior Sodium Ion Storage Properties. Adv. Funct. Mater. 2015, 25, 1780–1788. [Google Scholar]
- David, L.; Bhandavat, R.; Singh, G. MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 2014, 8, 1759–1770. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Su, D.; Zhou, R.; Sun, B.; Wang, G.; Qiao, S.Z. Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2012, 2, 970–975. [Google Scholar] [CrossRef]
- Gao, B.; Zhang, X. Synthesis of MoS2 inorganic fullerene-like nanoparticles by a chemical vapour deposition method: Research article. S. Afr. J. Chem. 2014, 67, 6–11. [Google Scholar]
- Guo, J.; Chen, X.; Jin, S.; Zhang, M.; Liang, C. Synthesis of graphene-like MoS2 nanowall/graphene nanosheet hybrid materials with high lithium storage performance. Catal. Today 2015, 246, 165–171. [Google Scholar] [CrossRef]
- Liu, Y.; Ghosh, R.; Wu, D.; Ismach, A.; Ruoff, R.; Lai, K. Mesoscale imperfections in MoS2 atomic layers grown by a vapor transport technique. Nano Lett. 2014, 14, 4682–4686. [Google Scholar] [CrossRef] [Green Version]
- Song, I.; Park, C.; Hong, M.; Baik, J.; Shin, H.J.; Choi, H.C. Patternable large-scale molybdenium disulfide atomic layers grown by gold-assisted chemical vapor deposition. Angew. Chem. 2014, 126, 1290–1293. [Google Scholar] [CrossRef]
- Wang, J.; Luo, C.; Gao, T.; Langrock, A.; Mignerey, A.C.; Wang, C. An Advanced MoS2/Carbon Anode for High-Performance Sodium-Ion Batteries. Small 2015, 11, 473–481. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, L.; Zhang, L.; Liu, X.; Zhang, C. Three-Dimensional Porous Graphene Supported MoS2 Nanoflower Prepared by a Facile Solvothermal Method with Excellent Rate Performance and Sodium-Ion Storage. Polymers 2020, 12, 2134. https://doi.org/10.3390/polym12092134
Zeng L, Zhang L, Liu X, Zhang C. Three-Dimensional Porous Graphene Supported MoS2 Nanoflower Prepared by a Facile Solvothermal Method with Excellent Rate Performance and Sodium-Ion Storage. Polymers. 2020; 12(9):2134. https://doi.org/10.3390/polym12092134
Chicago/Turabian StyleZeng, Li, Liping Zhang, Xingang Liu, and Chuhong Zhang. 2020. "Three-Dimensional Porous Graphene Supported MoS2 Nanoflower Prepared by a Facile Solvothermal Method with Excellent Rate Performance and Sodium-Ion Storage" Polymers 12, no. 9: 2134. https://doi.org/10.3390/polym12092134
APA StyleZeng, L., Zhang, L., Liu, X., & Zhang, C. (2020). Three-Dimensional Porous Graphene Supported MoS2 Nanoflower Prepared by a Facile Solvothermal Method with Excellent Rate Performance and Sodium-Ion Storage. Polymers, 12(9), 2134. https://doi.org/10.3390/polym12092134