Fatigue Behavior of 3D Braided Composites Containing an Open-Hole
Abstract
:1. Introduction
2. Experimental
2.1. Material Manufacturing
2.2. Quasi-Static and Fatigue Test Procedures
3. Results and Discussion
3.1. Yarn Cross Section
3.2. Open–Hole Quasi-Static Results
3.3. Open Hole Tension–Tension Fatigue Results
3.4. Failure Mechanism
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ko, F.K. Three-dimensional fabrics for composites. In Textile Structural Composites; Elsevier Science Publishers: Amsterdam, The Netherlands, 1989; pp. 129–171. [Google Scholar]
- Gause, L.W.; Alper, J.M. Structural properties of braided graphite/epoxy composites. J. Compos. Technol. Res. 1987, 9, 141–150. [Google Scholar]
- Macander, A.B.; Crane, R.M.; Camponeschi, E.T. Fabrication and mechanical properties of multidimensionally (XD) braided composite materials. In Composite Materials: Testing and Design (Seventh Conference); ASTM International: Conshochocken, PA, USA, 1986. [Google Scholar]
- Ko, F.K. Tensile strength and modulus of a three-dimensional braid composite. In Composite Materials: Testing and Design (Seventh Conference); ASTM International: Conshochocken, PA, USA, 1986. [Google Scholar]
- Du, G.-W.; Ko, F.K. Unit cell geometry of 3-D braided structures. J. Reinf. Plast. Compos. 1993, 12, 752–768. [Google Scholar] [CrossRef]
- Chen, P. Architecture and Mechanical Properties of 3D Braided Composites. Ph.D. Thesis, North Carolina State University, Raleigh, CA, USA, September 1994. [Google Scholar]
- Li, W. On the Structural Mechanics of 3-D Braided Preforms for Composites. Ph.D. Thesis, North Carolina State University, Raleigh, CA, USA, March 1990. [Google Scholar]
- Portanova, M.A. Fatigue Resistance of Unnotched and Post Impact (+/−30 Deg/0 Deg) 3-D Braided Composites; NASA Langley Research Center: Hampton, VA, USA, 1994. [Google Scholar]
- Portanova, M.A.; Deaton, J.W. Impact and Fatigue Resistance of a [±30°/0°] 3-D Braided Carbon Epoxy Composite. In Composite Materials: Fatigue and Fracture: Fifth Volume; ASTM International: Conshochocken, PA, USA, 1995. [Google Scholar]
- Carvelli, V.; Lomo, S.; Mungalov, D.D.; Razumino, J.; Bogdanovich, A.E.; Verpoest, I. Quasi-static and fatigue tensile behavior of a 3D rotary braided carbon/epoxy composite. J. Compos. Mater. 2012, 47, 3195–3209. [Google Scholar] [CrossRef]
- Schreiber, F.; Ko, F.K.; Yang, H.J.; Amalric, E.; Gries, T. Novel three-dimensional braiding approach and its products. In Proceedings of the 17th International Conference on Composite Materials, Edinburgh, UK, 27–31 July 2009. [Google Scholar]
- Sun, B.; Liu, R.; Gu, B. Numerical simulation of three-point bending fatigue of four-step 3-D braided rectangular composite under different stress levels from unit-cell approach. Comput. Mater. Sci. 2012, 65, 239–246. [Google Scholar] [CrossRef]
- Xu, K. A numerical study on the progressive failure of 3D four-directional braided composites. Adv. Mater. Sci. Eng. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Jacques, S.; De Baere, I.; Van Paepegem, W. Application of periodic boundary conditions on multiple part finite element meshes for the meso-scale homogenization of textile fabric composites. Compos. Sci. Technol. 2014, 92, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Curiel-Sosa, J.; Bui, T.Q. A novel interface constitutive model for prediction of stiffness and strength in 3D braided composites. Compos. Struct. 2017, 163, 32–43. [Google Scholar] [CrossRef]
- Liu, X.; Rouf, K.; Peng, B.; Yu, W. Two-step homogenization of textile composites using mechanics of structure genome. Compos. Struct. 2017, 171, 252–262. [Google Scholar] [CrossRef]
- Xu, J.; Lomov, S.V.; Verpoest, I.; Daggumati, S.; Paepegem, W.V.; Degrieck, J. A progressive damage model of textile composites on meso-scale using finite element method: Fatigue damage analysis. Comput. Struct. 2015, 152, 96–112. [Google Scholar] [CrossRef]
- Tian, Z.; Yan, Y.; Li, J.; Hong, Y.; Guo, F. Progressive damage and failure analysis of three-dimensional braided composites subjected to biaxial tension and compression. Compos. Struct. 2018, 185, 496–507. [Google Scholar] [CrossRef]
- Zhai, J.; Su, C.; Zeng, T.; Wang, Z.; Jiang, L. H Thermo-mechanical behavior analysis of 3D braided composites by multiscale finite element method. Compos. Struct. 2017, 176, 664–672. [Google Scholar] [CrossRef]
- Jiang, L.-L.; Xu, G.-D.; Su, C.; Lu, X.-M.; Tao, Z. Finite Element Analysis of Thermo-Mechanical Properties of 3D Braided Composites. Appl. Compos. Mater. 2013, 21, 325–340. [Google Scholar] [CrossRef]
- Zhang, C.; Curiel-Sosa, T.Q.; Bui, T. Meso-scale progressive damage modeling and life prediction of 3D braided composites under fatigue tension loading. Compos. Struct. 2018, 201, 62–71. [Google Scholar] [CrossRef]
- Hao, W.; Yuan, Y.; Yao, X.; Ma, Y. Computational analysis of fatigue behavior of 3D 4-directional braided composites based on unit cell approach. Adv. Eng. Softw. 2015, 82, 38–52. [Google Scholar] [CrossRef]
- Ramani, S.; Williams, D. Notched and unnotched fatigue behavior of angle-ply graphite/epoxy composites. In Fatigue of Filamentary Composite Materials; ASTM International: Conshochocken, PA, USA, 1977. [Google Scholar]
- Stinchcomb, W.W.; Reifsnider, K.L.; Heneke, E.G.; Kress, G. Fatigue Damage in Notched Composite Laminates under Tension-Tension Cyclic Loads; ETH Zurich: Zurich, Switzerland, 1985. [Google Scholar]
- Daggumati, S.; Daggumati, S.; De Baere, I.; Van Paepegem, W.; Degric, J.; Xu, J.; Lomov, S.V.; Verpoest, I. Fatigue and post-fatigue stress–strain analysis of a 5-harness satin weave carbon fibre reinforced composite. Compos. Sci. Technol. 2013, 74, 20–27. [Google Scholar] [CrossRef]
- Dai, S.; Cunningham, P.R.; Marshal, S.; Silva, C. Open hole quasi-static and fatigue characterisation of 3D woven composites. Compos. Struct. 2015, 131, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Nixon-Pearson, O.; Hallett, S. An investigation into the damage development and residual strengths of open-hole specimens in fatigue. Compos. Part A Appl. Sci. Manuf. 2015, 69, 266–278. [Google Scholar] [CrossRef] [Green Version]
- Muc, A.; Romanowicz, P. Effect of notch on static and fatigue performance of multilayered composite structures under tensile loads. Compos. Struct. 2017, 178, 27–36. [Google Scholar] [CrossRef]
- Sudarsono, S.; Ogi, K. Fatigue behavior of open-holed CFRP laminates with initially cut fibers. Open J. Compos. Mater. 2017, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- Engelstad, S.; Clay, S. Comparison of composite damage growth tools for fatigue behavior of notched composite laminates. J. Compos. Mater. 2017, 51, 2227–2249. [Google Scholar] [CrossRef]
- Pingkarawat, K.; Mouritz, A. Improving the mode I delamination fatigue resistance of composites using z-pins. Compos. Sci. Technol. 2014, 9, 70–76. [Google Scholar] [CrossRef]
- Alam, P.; Mamalis, D.; Robert, C.; Floreani, C.; Ó Bradigh, C.M. The fatigue of carbon fibre reinforced plastics-A review. Compos. Part B Eng. 2019, 166, 555–579. [Google Scholar] [CrossRef] [Green Version]
- Shuangqiang, L.; Qihong, Z.; Ge, C.; Ko, F. Open hole tension and compression behavior of 3D braided composites. Polym. Compos. 2020, 41, 2455–2465. [Google Scholar] [CrossRef]
- Hua, C.T.; Chu, J.-N.; Ko, F.K. Damage tolerance of three-dimensional commingled PEEK/carbon composites. In Composite Materials: Testing and Design (Tenth Volume); ASTM International: Conshochocken, PA, USA, 1992. [Google Scholar]
- HexTow®AS4 Carbon Fiber. Available online: https://www.hexcel.com/user_area/content_media/raw/AS4_HexTow_DataSheet.pdf (accessed on 11 March 2020).
- Wang, J.; Callus, P.; Bannister, M. Experimental and numerical investigation of the tension and compression strength of un-notched and notched quasi-isotropic laminates. Compos. Struct. 2004, 64, 297–306. [Google Scholar] [CrossRef]
Properties | Matrix | AS4-6k |
---|---|---|
Tensile modulus, GPa | 2.74 | 231 |
Tensile strength, MPa | 51 | 4447 |
Strain, % | 3.6% | 1.7 |
Density, g/m3 | 1.16 | 1.78 |
Tension | Compression | |||||||
---|---|---|---|---|---|---|---|---|
Vf | Without Hole/MPa | With Hole/MPa | Strength Retention% | Without Hole/MPa | With Hole/MPa | Strength Retention% | ||
3-D Braided | Style I (0° ± 12°) | 59 | 1173 ± 61 | 910 ± 57 | 80 | 589 ± 53 | 368 ± 61 | 62 |
Style II (± 12°) | 62 | 1279 ± 80 | 951 ± 45 | 74 | 596 ± 56 | 406 ± 33 | 68 | |
C12K/3501 (0° ± 20°) [2] | 60 | 668 | 661 | 99 | 429 | 314 | 73 | |
PEEK/AS4 (0° ± 20°) [34] | 60 | 586 | 463 | 79 | - | 259 | - | |
Laminates | Hexcel Ply 8552 [35] | 60 | 2205 | 432 | 20 | - | - | - |
18-ply APC-2 [(0 ± 20°)4, 0]s [34] | 60 | 1081 | 628 | 58 | 646 | 363 | 56 | |
24-ply AS43501 [−45/0/+ 45/90]s [2] | 60 | 911 | 445 | 49 | 420 | 403 | 96 | |
16-ply (0° ± 20°) [36] | 63 | 703 | 472 | 67 | 665 | 398 | 60 |
a | b | |
---|---|---|
100% un-notched | 1113 | −0.031 |
100% notched | 930.27 | −0.0312 |
42% axial un-notched | 1238.7 | −0.031 |
42% axial notched | 936.6 | −0.017 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, S.; Zhou, Q.; Mei, H.; Chen, G.; Ko, F. Fatigue Behavior of 3D Braided Composites Containing an Open-Hole. Polymers 2020, 12, 2147. https://doi.org/10.3390/polym12092147
Liang S, Zhou Q, Mei H, Chen G, Ko F. Fatigue Behavior of 3D Braided Composites Containing an Open-Hole. Polymers. 2020; 12(9):2147. https://doi.org/10.3390/polym12092147
Chicago/Turabian StyleLiang, Shuangqiang, Qihong Zhou, Haiyang Mei, Ge Chen, and Frank Ko. 2020. "Fatigue Behavior of 3D Braided Composites Containing an Open-Hole" Polymers 12, no. 9: 2147. https://doi.org/10.3390/polym12092147
APA StyleLiang, S., Zhou, Q., Mei, H., Chen, G., & Ko, F. (2020). Fatigue Behavior of 3D Braided Composites Containing an Open-Hole. Polymers, 12(9), 2147. https://doi.org/10.3390/polym12092147