Synthesis and Self-Assembly of Conjugated Block Copolymers
Abstract
:1. Introduction
2. Synthesis of Conjugated Block Copolymers
2.1. Synthesis of “Rod–Coil” Conjugated Block Copolymers
2.1.1. Grafting-From Approach
2.1.2. Grafting-Onto Approach
2.2. Synthesis of “Rod–Rod” Conjugated Block Copolymers
2.3. Other Types of cBCPs
3. Self-Assembly of cBCPs
3.1. In Bulk
3.2. In Solution
3.3. In Thin Film
4. Factors that Affect the Self-Assembly of cBCPs
4.1. Volume Fraction (f)
4.2. Block–Block Interactions (χ and μ)
4.3. Degree of Polymerization (N)
4.4. Side Chain Engineering
4.5. Regioregularity
4.6. The Influence of Middle Bridge
4.7. Active Nanoparticles
5. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977, 16, 578–580. [Google Scholar] [CrossRef]
- Tang, C.W.; VanSlyke, S.A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913–915. [Google Scholar] [CrossRef]
- Malliaras, G.G.; Hadziioannou, G.; Herrema, J.K.; Wildeman, J.; Wieringa, R.H.; Gill, R.E.; Lampoura, S.S. Tuning of the photo- and electroluminescence in multi-block copolymers of poly[(silanylene)thiophene]s via exciton confinement. Adv. Mater. 1993, 5, 721–723. [Google Scholar] [CrossRef]
- Park, L.S.; Han, Y.S.; Hwang, J.S.; Kim, S.D. Synthesis of conjugated polymers containing anthracene moiety and their electro-optical properties. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 3173–3180. [Google Scholar] [CrossRef]
- Romero, D.B.; Schaer, M.; Zuppiroli, L.; Cesar, B.; Widawski, G.; Francois, B. Light-emitting diodes based on copolymer organic semiconductors. Opt. Eng. 1995, 34, 1987–1992. [Google Scholar]
- Torsi, L.; Magliulo, M.; Manoli, K.; Palazzo, G. Organic field-effect transistor sensors: A tutorial review. Chem. Soc. Rev. 2013, 42, 8612–8628. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Goffri, S.; Breiby, D.W.; Andreasen, J.W.; Chanzy, H.D.; Janssen, R.A.J.; Nielsen, M.M.; Radano, C.P.; Sirringhaus, H.; Smith, P.; et al. Tough, Semiconducting Polyethylene-poly(3-hexylthiophene) Diblock Copolymers. Adv. Funct. Mater. 2007, 17, 2674–2679. [Google Scholar] [CrossRef]
- Hüttner, S.; Sommer, M.; Thelakkat, M. n-type organic field effect transistors from perylene bisimide block copolymers and homopolymers. Appl. Phys. Lett. 2008, 92, 093302. [Google Scholar] [CrossRef]
- Cao, W.; Xue, J. Recent progress in organic photovoltaics: Device architecture and optical design. Energy Environ. Sci. 2014, 7, 2123–2144. [Google Scholar] [CrossRef]
- Hedley, G.J.; Ruseckas, A.; Samuel, I.D.W. Light Harvesting for Organic Photovoltaics. Chem. Rev. 2017, 117, 796–837. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Wang, J.-Y.; Pei, J. Strategies To Enhance the Conductivity of n-Type Polymer Thermoelectric Materials. Chem. Mater. 2019, 31, 6412–6423. [Google Scholar] [CrossRef]
- Yan, X.; Xiong, M.; Li, J.-T.; Zhang, S.; Ahmad, Z.; Lu, Y.; Wang, Z.-Y.; Yao, Z.-F.; Wang, J.-Y.; Gu, X.; et al. Pyrazine-Flanked Diketopyrrolopyrrole (DPP): A New Polymer Building Block for High-Performance n-Type Organic Thermoelectrics. J. Am. Chem. Soc. 2019, 141, 20215–20221. [Google Scholar] [CrossRef]
- Dimitrakopoulos, C.D.; Malenfant, P.R.L. Organic Thin Film Transistors for Large Area Electronics. Adv. Mater. 2002, 14, 99–117. [Google Scholar] [CrossRef]
- Guo, C.H.; Lin, Y.H.; Witman, M.D.; Smith, K.A.; Wang, C.; Hexemer, A.; Strzalka, J.; Gomez, E.D.; Verduzco, R. Conjugated Block Copolymer Photovoltaics with near 3% Efficiency through Microphase Separation. Nano Lett. 2013, 13, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Savic, R.; Luo, L.; Eisenberg, A.; Maysinger, D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 2003, 300, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Warren, S.C.; Messina, L.C.; Slaughter, L.S.; Kamperman, M.; Zhou, Q.; Gruner, S.M.; DiSalvo, F.J.; Wiesner, U. Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly. Science 2008, 320, 1748–1752. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Zhao, D. On the Controllable Soft-Templating Approach to Mesoporous Silicates. Chem. Rev. 2007, 107, 2821–2860. [Google Scholar] [CrossRef]
- Riess, G. Micellization of block copolymers. Prog. Polym. Sci. 2003, 28, 1107–1170. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Lu, X.; Wang, W.; Kang, N.-G.; Mays, J.W. Block Copolymers: Synthesis, Self-Assembly, and Applications. Polymers 2017, 9, 494. [Google Scholar] [CrossRef]
- Liu, S.S.Y.; Ludwigs, S. Electrochemical Manipulation of Aligned Block Copolymer Templates. Macromol. Rapid Commun. 2020, 41, 1900485. [Google Scholar] [CrossRef]
- Pinto-Gómez, C.; Pérez-Murano, F.; Bausells, J.; Villanueva, L.G.; Fernández-Regúlez, M. Directed Self-Assembly of Block Copolymers for the Fabrication of Functional Devices. Polymers 2020, 12, 2432. [Google Scholar] [CrossRef] [PubMed]
- El Jundi, A.; Buwalda, S.J.; Bakkour, Y.; Garric, X.; Nottelet, B. Double hydrophilic block copolymers self-assemblies in biomedical applications. Adv. Colloid Interface Sci. 2020, 283, 102213. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, Q.; Kaneti, Y.V.; Hou, D.; Yamauchi, Y.; Mai, Y. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem. Soc. Rev. 2020, 49, 4681–4736. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.; Yang, H.; Wu, Z.; Liu, J.; Zhang, W. Self-assembled block polymer aggregates in selective solution: Controllable morphology transitions and their applications in drug delivery. Expert Opin. Drug Deliv. 2020, 17, 947–961. [Google Scholar] [CrossRef] [PubMed]
- Khandpur, A.K.; Foerster, S.; Bates, F.S.; Hamley, I.W.; Ryan, A.J.; Bras, W.; Almdal, K.; Mortensen, K. Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition. Macromolecules 1995, 28, 8796–8806. [Google Scholar] [CrossRef]
- Bates, F.S.; Fredrickson, G.H. Block Copolymers—Designer Soft Materials. Physics Today 1999, 52, 32–38. [Google Scholar] [CrossRef]
- Chang, A.B.; Bates, F.S. The ABCs of Block Polymers. Macromolecules 2020, 53, 2765–2768. [Google Scholar] [CrossRef]
- Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985. [Google Scholar] [CrossRef]
- Cummins, C.; Lundy, R.; Walsh, J.; Ponsinet, V.; Fleury, G.; Morris, M. Enabling future nanomanufacturing through block copolymer self-assembly: A review. Nano Today 2020, 35, 100936. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, J.; Zhang, P.; Luan, X.; Mai, Y. “Rod–coil” copolymers get self-assembled in solution. Mater. Chem. Front. 2019, 3, 2283–2307. [Google Scholar] [CrossRef]
- Ariga, K.; Nishikawa, M.; Mori, T.; Takeya, J.; Shrestha, L.K.; Hill, J.P. Self-assembly as a key player for materials nanoarchitectonics. Sci. Technol. Adv. Mater 2019, 20, 51–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Hong, C.-Y.; Pan, C.-Y. Polymerization techniques in polymerization-induced self-assembly (PISA). Polym. Chem. 2020, 11, 3673–3689. [Google Scholar] [CrossRef]
- Varlas, S.; Lawrenson, S.B.; Arkinstall, L.A.; O’Reilly, R.K.; Foster, J.C. Self-assembled nanostructures from amphiphilic block copolymers prepared via ring-opening metathesis polymerization (ROMP). Prog. Polym. Sci. 2020, 107, 101278. [Google Scholar] [CrossRef]
- Matsen, M.W.; Bates, F.S. Unifying Weak- and Strong-Segregation Block Copolymer Theories. Macromolecules 1996, 29, 1091–1098. [Google Scholar] [CrossRef]
- Mitchell, V.D.; Gann, E.; Huettner, S.; Singh, C.R.; Subbiah, J.; Thomsen, L.; McNeill, C.R.; Thelakkat, M.; Jones, D.J. Morphological and Device Evaluation of an Amphiphilic Block Copolymer for Organic Photovoltaic Applications. Macromolecules 2017, 50, 4942–4951. [Google Scholar] [CrossRef]
- Lee, S.; Bluemle, M.J.; Bates, F.S. Discovery of a Frank-Kasper sigma phase in sphere-forming block copolymer melts. Science 2010, 330, 349–353. [Google Scholar] [CrossRef]
- Borsali, R.; Lecommandoux, S.; Pecora, R.; Benoît, H. Scattering Properties of Rod−Coil and Once-Broken Rod Block Copolymers. Macromolecules 2001, 34, 4229–4234. [Google Scholar] [CrossRef]
- Loo, Y.-L.; Register, R.A.; Ryan, A.J. Modes of Crystallization in Block Copolymer Microdomains: Breakout, Templated, and Confined. Macromolecules 2002, 35, 2365–2374. [Google Scholar] [CrossRef]
- Wang, J.S.; Matyjaszewski, K. Controlled Living Radical Polymerization-Atom-Transfer Radical Polymerization in the Presence of Transition-Metal Complexes. J. Am. Chem. Soc. 1995, 117, 5614–5615. [Google Scholar] [CrossRef]
- Chiefari, J.; Chong, Y.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T.P.; Mayadunne, R.T.; Meijs, G.F.; Moad, C.L.; Moad, G. Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer: The RAFT Process. Macromolecules 1998, 31, 5559–5562. [Google Scholar] [CrossRef]
- Georges, M.K.; Veregin, R.P.; Kazmaier, P.M.; Hamer, G.K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 1993, 26, 2987–2988. [Google Scholar] [CrossRef]
- Tung, Y.-C.; Wu, W.-C.; Chen, W.-C. Morphological Transformation and Photophysical Properties of Rod-Coil Poly[2,7-(9,9-dihexylfluorene)]-block-poly(acrylic acid) in Solution. Macromol. Rapid Commun. 2006, 27, 1838–1844. [Google Scholar] [CrossRef]
- Liu, J.; Sheina, E.; Kowalewski, T.; McCullough, R.D. Tuning the Electrical Conductivity and Self-Assembly of Regioregular Polythiophene by Block Copolymerization: Nanowire Morphologies in New Di- and Triblock Copolymers. Angew. Chem. Int. Ed. 2002, 41, 329–332. [Google Scholar] [CrossRef]
- Lee, J.U.; Cirpan, A.; Emrick, T.; Russell, T.P.; Jo, W.H. Synthesis and photophysical property of well-defined donor–acceptor diblock copolymer based on regioregular poly(3-hexylthiophene) and fullerene. J. Mater. Chem. 2009, 19, 1483–1489. [Google Scholar] [CrossRef]
- Brochon, C.; Sary, N.; Mezzenga, R.; Ngov, C.; Richard, F.; May, M.; Hadziioannou, G. Synthesis of poly(paraphenylene vinylene)-polystyrene-based rod-coil block copolymer by atom transfer radical polymerization: Toward a self-organized lamellar semiconducting material. J. Appl. Polym. Sci. 2008, 110, 3664–3670. [Google Scholar] [CrossRef] [Green Version]
- Qu, G.; Jiang, F.; Zhang, S.; Usuda, S. A novel poly(p-phenylene vinylene)-b-poly(methyl methacrylate) rod–coil diblock copolymer. Mater. Lett. 2007, 61, 3421–3424. [Google Scholar] [CrossRef]
- Lin, S.-T.; Tung, Y.-C.; Chen, W.-C. Synthesis, structures and multifunctional sensory properties of poly[2,7-(9,9-dihexylfluorene)]-block-poly[2-(dimethylamino)ethyl methacrylate] rod-coil diblock copolymers. J. Mater. Chem. 2008, 18, 3985–3992. [Google Scholar] [CrossRef]
- Kern, M.R.; Boyes, S.G. RAFT polymerization kinetics and polymer characterization of P3HT rod–coil block copolymers. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 3575–3585. [Google Scholar] [CrossRef]
- Stalmach, U.; de Boer, B.; Post, A.D.; van Hutten, P.F.; Hadziioannou, G. Synthesis of a Conjugated Macromolecular Initiator for Nitroxide-Mediated Free Radical Polymerization. Angew. Chem. Int. Ed. 2001, 40, 428–430. [Google Scholar] [CrossRef]
- Dai, C.-A.; Yen, W.-C.; Lee, Y.-H.; Ho, C.-C.; Su, W.-F. Facile Synthesis of Well-Defined Block Copolymers Containing Regioregular Poly(3-hexyl thiophene) via Anionic Macroinitiation Method and Their Self-Assembly Behavior. J. Am. Chem. Soc. 2007, 129, 11036–11038. [Google Scholar] [CrossRef]
- Park, S.-J.; Kang, S.-G.; Fryd, M.; Saven, J.G.; Park, S.-J. Highly Tunable Photoluminescent Properties of Amphiphilic Conjugated Block Copolymers. J. Am. Chem. Soc. 2010, 132, 9931–9933. [Google Scholar] [CrossRef] [PubMed]
- Boudouris, B.W.; Frisbie, C.D.; Hillmyer, M.A. Nanoporous Poly(3-alkylthiophene) Thin Films Generated from Block Copolymer Templates. Macromolecules 2008, 41, 67–75. [Google Scholar] [CrossRef]
- Radano, C.P.; Scherman, O.A.; Stingelin-Stutzmann, N.; Müller, C.; Breiby, D.W.; Smith, P.; Janssen, R.A.J.; Meijer, E.W. Crystalline−Crystalline Block Copolymers of Regioregular Poly(3-hexylthiophene) and Polyethylene by Ring-Opening Metathesis Polymerization. J. Am. Chem. Soc. 2005, 127, 12502–12503. [Google Scholar] [CrossRef]
- De Cuendias, A.; Le Hellaye, M.; Lecommandoux, S.; Cloutet, E.; Cramail, H. Synthesis and self-assembly of polythiophene-based rod–coil and coil–rod–coil block copolymers. J. Mater. Chem. 2005, 15, 3264–3267. [Google Scholar] [CrossRef]
- Li, Z.; Ono, R.J.; Wu, Z.-Q.; Bielawski, C.W. Synthesis and self-assembly of poly(3-hexylthiophene)-block-poly(acrylic acid). Chem. Commun. 2011, 47, 197–199. [Google Scholar] [CrossRef]
- Lohwasser, R.H.; Thelakkat, M. Synthesis of Amphiphilic Rod–Coil P3HT-b-P4VP Carrying a Long Conjugated Block Using NMRP and Click Chemistry. Macromolecules 2012, 45, 3070–3077. [Google Scholar] [CrossRef]
- Oh, S.; Kang, S.; Cativo, M.H.M.; Yang, M.; Chung, S.H.; Kim, J.; Bouffard, J.; Hong, S.; Park, S.J. Long-Range Order Self-Assembly of Conjugated Block Copolymers at Inclined Air-Liquid Interfaces. ACS Appl. Mater. Interfaces 2020, 12, 5099–5105. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, H.H.; Urban, V.S.; Littrell, K.C.; Thiyagarajan, P.; Yu, L. Syntheses of Amphiphilic Diblock Copolymers Containing a Conjugated Block and Their Self-Assembling Properties. J. Am. Chem. Soc. 2000, 122, 6855–6861. [Google Scholar] [CrossRef]
- Olsen, B.D.; Segalman, R.A. Structure and Thermodynamics of Weakly Segregated Rod−Coil Block Copolymers. Macromolecules 2005, 38, 10127–10137. [Google Scholar] [CrossRef]
- Iovu, M.C.; Sheina, E.E.; Gil, R.R.; McCullough, R.D. Experimental Evidence for the Quasi-“Living” Nature of the Grignard Metathesis Method for the Synthesis of Regioregular Poly(3-alkylthiophenes). Macromolecules 2005, 38, 8649–8656. [Google Scholar] [CrossRef]
- Wu, P.-T.; Ren, G.; Kim, F.S.; Li, C.; Mezzenga, R.; Jenekhe, S.A. Poly(3-hexylthiophene)-b-poly(3-cyclohexylthiophene): Synthesis, microphase separation, thin film transistors, and photovoltaic applications. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 614–626. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tajima, K.; Hashimoto, K. Nanostructure Formation in Poly(3-hexylthiophene-block-3-(2-ethylhexyl)thiophene)s. Macromolecules 2009, 42, 7008–7015. [Google Scholar] [CrossRef]
- He, M.; Zhao, L.; Wang, J.; Han, W.; Yang, Y.; Qiu, F.; Lin, Z. Self-Assembly of All-Conjugated Poly(3-alkylthiophene) Diblock Copolymer Nanostructures from Mixed Selective Solvents. ACS Nano 2010, 4, 3241–3247. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Han, W.; Ge, J.; Yu, W.; Yang, Y.; Qiu, F.; Lin, Z. Annealing effects on the photovoltaic performance of all-conjugated poly(3-alkylthiophene) diblock copolymer-based bulk heterojunction solar cells. Nanoscale 2011, 3, 3159–3163. [Google Scholar] [CrossRef]
- Lee, K.S.; Kim, P.; Lee, J.; Choi, C.; Seo, Y.; Park, S.Y.; Kim, K.; Park, C.; Cho, K.; Moon, H.C.; et al. End-on Chain Orientation of Poly(3-alkylthiophene)s on a Substrate by Microphase Separation of Lamellar Forming Amphiphilic Diblock Copolymer. Macromolecules 2019, 52, 6734–6740. [Google Scholar] [CrossRef]
- Bridges, C.R.; Yan, H.; Pollit, A.A.; Seferos, D.S. Controlled Synthesis of Fully π-Conjugated Donor–Acceptor Block Copolymers Using a Ni(II) Diimine Catalyst. ACS Macro Lett. 2014, 3, 671–674. [Google Scholar] [CrossRef]
- Loewe, R.S.; Khersonsky, S.M.; McCullough, R.D. A Simple Method to Prepare Head-to-Tail Coupled, Regioregular Poly(3-alkylthiophenes) Using Grignard Metathesis. Adv. Mater. 1999, 11, 250–253. [Google Scholar] [CrossRef]
- Stefan, M.C.; Bhatt, M.P.; Sista, P.; Magurudeniya, H.D. Grignard metathesis (GRIM) polymerization for the synthesis of conjugated block copolymers containing regioregular poly(3-hexylthiophene). Polym. Chem. 2012, 3, 1693–1701. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, Y.; Kwon, N.Y.; Lee, Y.W.; Woo, H.Y.; Chae, W.S.; Park, S.; Cho, M.J.; Choi, D.H. Significantly Improved Morphology and Efficiency of Nonhalogenated Solvent-Processed Solar Cells Derived from a Conjugated Donor-Acceptor Block Copolymer. Adv. Sci. 2020, 7, 1902470. [Google Scholar] [CrossRef]
- Rahmanudin, A.; Yao, L.; Sekar, A.; Cho, H.-H.; Liu, Y.; Lhermitte, C.R.; Sivula, K. Fully Conjugated Donor–Acceptor Block Copolymers for Organic Photovoltaics via Heck–Mizoroki Coupling. ACS Macro Lett. 2019, 8, 134–139. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Smith, K.A.; Kempf, C.N.; Verduzco, R. Synthesis and crystallinity of all-conjugated poly(3-hexylthiophene) block copolymers. Polym. Chem. 2013, 4, 229–232. [Google Scholar] [CrossRef]
- Ku, S.Y.; Brady, M.A.; Treat, N.D.; Cochran, J.E.; Robb, M.J.; Kramer, E.J.; Chabinyc, M.L.; Hawker, C.J. A modular strategy for fully conjugated donor-acceptor block copolymers. J. Am. Chem. Soc. 2012, 134, 16040–16046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Park, C.G.; Kim, A.; Kim, H.J.; Kim, Y.; Park, S.; Cho, M.J.; Choi, D.H. High-Performance Polymer Solar Cell with Single Active Material of Fully Conjugated Block Copolymer Composed of Wide-Band gap Donor and Narrow-Band gap Acceptor Blocks. ACS Appl. Mater. Interfaces 2018, 10, 18974–18983. [Google Scholar] [CrossRef] [PubMed]
- Park, C.G.; Park, S.H.; Kim, Y.; Nguyen, T.L.; Woo, H.Y.; Kang, H.; Yoon, H.J.; Park, S.; Cho, M.J.; Choi, D.H. Facile one-pot polymerization of a fully conjugated donor–acceptor block copolymer and its application in efficient single component polymer solar cells. J. Mater. Chem. A 2019, 7, 21280–21289. [Google Scholar] [CrossRef]
- Lee, D.H.; Lee, J.H.; Kim, H.J.; Choi, S.; Park, G.E.; Cho, M.J.; Choi, D.H. (D)n–σ–(A)m type partially conjugated block copolymer and its performance in single-component polymer solar cells. J. Mater. Chem. A 2017, 5, 9745–9751. [Google Scholar] [CrossRef]
- Chevrier, M.; Lopez, G.; Zajaczkowski, W.; Kesters, J.; Lenaerts, R.; Surin, M.; De Winter, J.; Richeter, S.; Pisula, W.; Mehdi, A.; et al. Synthesis and properties of a P3HT-based ABA triblock copolymer containing a perfluoropolyether central segment. Synth. Met. 2019, 252, 127–134. [Google Scholar] [CrossRef]
- Verheyen, L.; Timmermans, B.; Koeckelberghs, G. Influence of the Sequence in Conjugated Triblock Copolymers on Their Aggregation Behavior. Macromolecules 2018, 51, 6421–6429. [Google Scholar] [CrossRef]
- Lee, S.; Cheng, L.-C.; Yager, K.G.; Mumtaz, M.; Aissou, K.; Ross, C.A. In Situ Study of ABC Triblock Terpolymer Self-Assembly under Solvent Vapor Annealing. Macromolecules 2019, 52, 1853–1863. [Google Scholar] [CrossRef]
- Kalow, J.A.; Swager, T.M. Synthesis of Miktoarm Branched Conjugated Copolymers by ROMPing In and Out. ACS Macro Lett. 2015, 4, 1229–1233. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Moon, H.C.; Choi, C.; Kim, J.K. Synthesis and Characterization of [Poly(3-dodecylthiophene)]2Poly(methyl methacrylate) Miktoarm Star Copolymer. Macromolecules 2015, 48, 3523–3530. [Google Scholar] [CrossRef]
- Park, J.; Choi, C.; Hyun, S.; Moon, H.C.; Vincent Joseph, K.L.; Kim, J.K. Microphase Separation of P3HT-Containing Miktoarm Star Copolymers. Macromolecules 2016, 49, 616–623. [Google Scholar] [CrossRef]
- Park, J.; Moon, H.C.; Kim, J.K. Facile synthesis for well-defined A2B miktoarm star copolymer of poly(3-hexylthiophene) and poly(methyl methacrylate) by the combination of anionic polymerization and click reaction. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 2225–2232. [Google Scholar] [CrossRef]
- Higashihara, T.; Ito, S.; Fukuta, S.; Miyane, S.; Ochiai, Y.; Ishizone, T.; Ueda, M.; Hirao, A. Synthesis and Characterization of Multicomponent ABC- and ABCD-Type Miktoarm Star-Branched Polymers Containing a Poly(3-hexylthiophene) Segment. ACS Macro Lett. 2016, 5, 631–635. [Google Scholar] [CrossRef]
- Ahn, S.-K.; Carrillo, J.-M.Y.; Keum, J.K.; Chen, J.; Uhrig, D.; Lokitz, B.S.; Sumpter, B.G.; Michael Kilbey, S. Nanoporous poly(3-hexylthiophene) thin film structures from self-organization of a tunable molecular bottlebrush scaffold. Nanoscale 2017, 9, 7071–7080. [Google Scholar] [CrossRef]
- Ahn, S.-k.; Nam, J.; Zhu, J.; Lee, E.; Michael Kilbey, S. Solution self-assembly of poly(3-hexylthiophene)–poly(lactide) brush copolymers: Impact of side chain arrangement. Polym. Chem. 2018, 9, 3279–3286. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, X.; Yang, M.; Zhang, X.; Wang, W.; Wegner, G.; Burger, C. Synthesis and Cylinder Microdomain Structures of Hybrid Block Copolymers of π-Conjugated and Dendritic Poly(phenylazomethine)s and Flexible and Linear PEO. Macromolecules 2007, 40, 2606–2612. [Google Scholar] [CrossRef]
- Yang, W.Y.; Lee, E.; Lee, M. Tubular organization with coiled ribbon from amphiphilic rigid-flexible macrocycle. J. Am. Chem. Soc. 2006, 128, 3484–3485. [Google Scholar] [CrossRef]
- Chen, J.T.; Thomas, E.L.; Ober, C.K.; Mao, G. Self-Assembled Smectic Phases in Rod-Coil Block Copolymers. Science 1996, 273, 343–346. [Google Scholar] [CrossRef]
- Radzilowski, L.H.; Carragher, B.O.; Stupp, S.I. Three-Dimensional Self-Assembly of Rodcoil Copolymer Nanostructures. Macromolecules 1997, 30, 2110–2119. [Google Scholar] [CrossRef]
- Tenneti, K.K.; Chen, X.; Li, C.Y.; Tu, Y.; Wan, X.; Zhou, Q.F.; Sics, I.; Hsiao, B.S. Perforated layer structures in liquid crystalline rod-coil block copolymers. J. Am. Chem. Soc. 2005, 127, 15481–15490. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Oh, N.-K.; Zin, W.-C.; Lee, M. Self-assembly of rod-coil molecules into molecular length-dependent organization. J. Am. Chem. Soc. 2004, 126, 3551–3558. [Google Scholar] [CrossRef] [PubMed]
- Sary, N.; Rubatat, L.; Brochon, C.; Hadziioannou, G.; Ruokolainen, J.; Mezzenga, R. Self-Assembly of Poly(diethylhexyloxy-p-phenylenevinylene)-b- poly(4-vinylpyridine) Rod−Coil Block Copolymer Systems. Macromolecules 2007, 40, 6990–6997. [Google Scholar] [CrossRef] [Green Version]
- Reenders, M.; ten Brinke, G. Compositional and Orientational Ordering in Rod−Coil Diblock Copolymer Melts. Macromolecules 2002, 35, 3266–3280. [Google Scholar] [CrossRef] [Green Version]
- Scherf, U.; Adamczyk, S.; Gutacker, A.; Koenen, N. All-conjugated, rod-rod block copolymers-generation and self-assembly properties. Macromol. Rapid Commun. 2009, 30, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.-B.; Moon, K.-S.; Lee, M. Rod–coil block molecules: Their aqueous self-assembly and biomaterials applications. J. Mater. Chem. 2008, 18, 2909–2918. [Google Scholar] [CrossRef]
- Kim, B.S.; Yang, W.Y.; Ryu, J.H.; Yoo, Y.S.; Lee, M. Carbohydrate-coated nanocapsules from amphiphilic rod-coil molecule: Binding to bacterial type 1 pili. Chem. Commun. 2005, 15, 2035–2037. [Google Scholar] [CrossRef]
- Kim, B.-S.; Hong, D.-J.; Bae, J.; Lee, M. Controlled Self-Assembly of Carbohydrate Conjugate Rod−Coil Amphiphiles for Supramolecular Multivalent Ligands. J. Am. Chem. Soc. 2005, 127, 16333–16337. [Google Scholar] [CrossRef]
- Jenekhe, S.A.; Chen, X.L. Self-Assembled Aggregates of Rod-Coil Block Copolymers and Their Solubilization and Encapsulation of Fullerenes. Science 1998, 279, 1903. [Google Scholar] [CrossRef] [Green Version]
- Segalman, R.A.; McCulloch, B.; Kirmayer, S.; Urban, J.J. Block Copolymers for Organic Optoelectronics. Macromolecules 2009, 42, 9205–9216. [Google Scholar] [CrossRef]
- Roncali, J.; Grosu, I. The Dawn of Single Material Organic Solar Cells. Adv. Sci. 2019, 6, 1801026. [Google Scholar] [CrossRef] [Green Version]
- Yassar, A.; Miozzo, L.; Gironda, R.; Horowitz, G. Rod–coil and all-conjugated block copolymers for photovoltaic applications. Prog. Polym. Sci. 2013, 38, 791–844. [Google Scholar] [CrossRef]
- Lee, Y.; Gomez, E.D. Challenges and Opportunities in the Development of Conjugated Block Copolymers for Photovoltaics. Macromolecules 2015, 48, 7385–7395. [Google Scholar] [CrossRef]
- Kim, H.-C.; Park, S.-M.; Hinsberg, W.D. Block Copolymer Based Nanostructures: Materials, Processes, and Applications to Electronics. Chem. Rev. 2010, 110, 146–177. [Google Scholar] [CrossRef]
- Botiz, I.; Darling, S.B. Optoelectronics using block copolymers. Mater. Today 2010, 13, 42–51. [Google Scholar] [CrossRef]
- Sirringhaus, H.; Brown, P.J.; Friend, R.H.; Nielsen, M.M.; Bechgaard, K.; Langeveld-Voss, B.M.W.; Spiering, A.J.H.; Janssen, R.A.J.; Meijer, E.W.; Herwig, P.; et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401, 685–688. [Google Scholar] [CrossRef]
- Han, J.; Kim, J.-S.; Shin, J.M.; Yun, H.; Kim, Y.; Park, H.; Kim, B.J. Rapid solvo-microwave annealing for optimizing ordered nanostructures and crystallization of regioregular polythiophene-based block copolymers. Polym. Chem. 2019, 10, 4962–4972. [Google Scholar] [CrossRef]
- Wu, P.-T.; Ren, G.; Li, C.; Mezzenga, R.; Jenekhe, S.A. Crystalline Diblock Conjugated Copolymers: Synthesis, Self-Assembly, and Microphase Separation of Poly(3-butylthiophene)-b-poly(3-octylthiophene). Macromolecules 2009, 42, 2317–2320. [Google Scholar] [CrossRef] [Green Version]
- Hollinger, J.; Jahnke, A.A.; Coombs, N.; Seferos, D.S. Controlling Phase Separation and Optical Properties in Conjugated Polymers through Selenophene−Thiophene Copolymerization. J. Am. Chem. Soc. 2010, 132, 8546–8547. [Google Scholar] [CrossRef]
- Ren, G.; Wu, P.-T.; Jenekhe, S.A. Enhanced Performance of Bulk Heterojunction Solar Cells Using Block Copoly(3-alkylthiophene)s. Chem. Mater. 2010, 22, 2020–2026. [Google Scholar] [CrossRef]
- Ge, J.; He, M.; Qiu, F.; Yang, Y. Synthesis, Cocrystallization, and Microphase Separation of All-Conjugated Diblock Copoly(3-alkylthiophene)s. Macromolecules 2010, 43, 6422–6428. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, R.; Wang, L.; Zhang, J.; Yu, X.; Liu, J.; Xing, R.; Geng, Y.; Han, Y. Face-On and Edge-On Orientation Transition and Self-Epitaxial Crystallization of All-Conjugated Diblock Copolymer. Macromolecules 2015, 48, 7557–7566. [Google Scholar] [CrossRef]
- Stalmach, U.; de Boer, B.; Videlot, C.; van Hutten, P.F.; Hadziioannou, G. Semiconducting Diblock Copolymers Synthesized by Means of Controlled Radical Polymerization Techniques. J. Am. Chem. Soc. 2000, 122, 5464–5472. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-H.; Yen, W.-C.; Su, W.-F.; Dai, C.-A. Self-assembly and phase transformations of π-conjugated block copolymers that bend and twist: From rigid-rod nanowires to highly curvaceous gyroids. Soft Matter 2011, 7, 10429–10442. [Google Scholar] [CrossRef]
- Kynaston, E.L.; Winchell, K.J.; Yee, P.Y.; Manion, J.G.; Hendsbee, A.D.; Li, Y.; Huettner, S.; Tolbert, S.H.; Seferos, D.S. Poly(3-alkylthiophene)-block-poly(3-alkylselenophene)s: Conjugated Diblock Co-polymers with Atypical Self-Assembly Behavior. ACS Appl. Mater. Interfaces 2019, 11, 7174–7183. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Wang, J.-Y.; Pei, J. Roles of Flexible Chains in Organic Semiconducting Materials. Chem. Mater. 2014, 26, 594–603. [Google Scholar] [CrossRef]
- Mei, J.; Bao, Z. Side Chain Engineering in Solution-Processable Conjugated Polymers. Chem. Mater. 2014, 26, 604–615. [Google Scholar] [CrossRef]
- Guo, Z.-H.; Ai, N.; McBroom, C.R.; Yuan, T.; Lin, Y.-H.; Roders, M.; Zhu, C.; Ayzner, A.L.; Pei, J.; Fang, L. A side-chain engineering approach to solvent-resistant semiconducting polymer thin films. Polym. Chem. 2016, 7, 648–655. [Google Scholar] [CrossRef]
- Lin, S.-H.; Wu, S.-J.; Ho, C.-C.; Su, W.-F. Rational Design of Versatile Self-Assembly Morphology of Rod–Coil Block Copolymer. Macromolecules 2013, 46, 2725–2732. [Google Scholar] [CrossRef]
- Lombeck, F.; Komber, H.; Sepe, A.; Friend, R.H.; Sommer, M. Enhancing Phase Separation and Photovoltaic Performance of All-Conjugated Donor–Acceptor Block Copolymers with Semifluorinated Alkyl Side Chains. Macromolecules 2015, 48, 7851–7860. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kim, Y.; Kim, H.-J.; Kim, H.J.; Yang, H.; Jung, Y.S.; Stein, G.E.; Kim, B.J. Regioregularity-Driven Morphological Transition of Poly(3-hexylthiophene)-Based Block Copolymers. Macromolecules 2017, 50, 1902–1908. [Google Scholar] [CrossRef]
- Kim, J.-S.; Han, J.; Kim, Y.; Park, H.; Coote, J.P.; Stein, G.E.; Kim, B.J. Domain Structures of Poly(3-dodecylthiophene)-Based Block Copolymers Depend on Regioregularity. Macromolecules 2018, 51, 4077–4084. [Google Scholar] [CrossRef]
- Coote, J.P.; Kim, J.-S.; Lee, B.; Han, J.; Kim, B.J.; Stein, G.E. Crystallization Modes of Poly(3-dodecylthiophene)-Based Block Copolymers Depend on Regioregularity and Morphology. Macromolecules 2018, 51, 9276–9283. [Google Scholar] [CrossRef]
- Mawele Loudy, C.; Allouche, J.; Bousquet, A.; Courreges, C.; Martinez, H.; Billon, L. Core@Corona Functional Nanoparticle-Driven Rod-Coil Diblock Copolymer Self-Assembly. Langmuir 2019, 35, 16925–16934. [Google Scholar] [CrossRef] [PubMed]
- Yen, W.-C.; Lee, Y.-H.; Lin, J.-F.; Dai, C.-A.; Jeng, U.S.; Su, W.-F. Effect of TiO2 Nanoparticles on Self-Assembly Behaviors and Optical and Photovoltaic Properties of the P3HT-b-P2VP Block Copolymer. Langmuir 2011, 27, 109–115. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, L.-L.; Zhou, X.; Yue, K.; Guo, Z.-H. Synthesis and Self-Assembly of Conjugated Block Copolymers. Polymers 2021, 13, 110. https://doi.org/10.3390/polym13010110
Xiao L-L, Zhou X, Yue K, Guo Z-H. Synthesis and Self-Assembly of Conjugated Block Copolymers. Polymers. 2021; 13(1):110. https://doi.org/10.3390/polym13010110
Chicago/Turabian StyleXiao, Lin-Lin, Xu Zhou, Kan Yue, and Zi-Hao Guo. 2021. "Synthesis and Self-Assembly of Conjugated Block Copolymers" Polymers 13, no. 1: 110. https://doi.org/10.3390/polym13010110
APA StyleXiao, L.-L., Zhou, X., Yue, K., & Guo, Z.-H. (2021). Synthesis and Self-Assembly of Conjugated Block Copolymers. Polymers, 13(1), 110. https://doi.org/10.3390/polym13010110