Ammonium Release and Adsorption Characters of Polyurethane–Biochar Crosslinked Material as an Additive Filler in Stormwater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Additive Fillers Preparation
2.2. The Physicochemical and Thermal Characterizations Tests
2.3. Leaching Experiments
2.4. Adsorption Experiments
2.5. Column Experiments
3. Results and Discussion
3.1. Physicochemical Properties of Additive Fillers
3.2. Thermal Characterizations of Polyurethane–Biochar Crosslinked Material (PCB)
3.3. Ammonia Nitrogen Leaching
3.4. Ammonium Isothermal Adsorption
3.5. Stormwater Infiltration Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trenberth, K.E.; Asrar, G.R. Challenges and Opportunities in Water Cycle Research: WCRP Contributions. Surv. Geophys. 2014, 35, 515–532. [Google Scholar] [CrossRef]
- Nika, C.E.; Vasilaki, V.; Expósito, A.; Katsou, E. Water Cycle and Circular Economy: Developing a Circularity Assessment Framework for Complex Water Systems. Water Res. 2020, 187, 116423. [Google Scholar] [CrossRef]
- Carpenter, S.; Caraco, N.F.; Correll, D.L.; Howarth, R.; Sharpley, A.N.; Smith, V. Non-Point Pollution of Surface Waters With Phosphorus and Nitrogen. Ecol. Appl. 1998, 8. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Chabi, K.; Hu, Y.; Zhang, S.; Yu, X. Ammonium removal of biological roughing filter for rural drinking water pretreatment. Water Supply 2020, 20, 2768–2778. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756. [Google Scholar] [CrossRef] [Green Version]
- Laurenson, G.; Laurenson, S.; Bolan, N.; Beecham, S.; Clark, I. Chapter Four—The Role of Bioretention Systems in the Treatment of Stormwater. Adv. Agron. 2013, 120, 223–274. [Google Scholar] [CrossRef]
- Davis, A.P.; Hunt, W.F.; Traver, R.G.; Clar, M. Bioretention Technology: Overview of Current Practice and Future Needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- Hunt, W.F.; Davis, A.P.; Traver, R.G. Meeting Hydrologic and Water Quality Goals through Targeted Bioretention Design. J. Environ. Eng. Asce 2012, 138, 698–707. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C. Water Quality Improvement through Bioretention Media: Nitrogen and Phosphorus Removal. Water Env. Res. 2006, 78. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.H.; Davis, A.P. Evaluation and optimization of bioretention media for treatment of urban storm water runoff. J. Environ. Eng. 2005, 131, 1521–1531. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C. Laboratory Study of Biological Retention for Urban Stormwater Management. Water Environ. Fed. 2001, 73. [Google Scholar] [CrossRef]
- Hunt, W.F.; Smith, J.T.; Jadlocki, S.J.; Hathaway, J.M.; Eubanks, P.R. Pollutant removal and peak flow mitigation by a bioretention cell in urban Charlotte, NC. J. Environ. Eng. Asce 2008, 134, 403–408. [Google Scholar] [CrossRef]
- Hsieh, C.-h.; Davis, A.P.; Needelman, B.A. Nitrogen removal from urban stormwater runoff through layered bioretention columns. Water Env. Res. 2007, 79, 2404–2411. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Davis, A.P. Urban Stormwater Runoff Nitrogen Composition and Fate in Bioretention Systems. Environ. Sci. Technol. 2014, 48, 3403–3410. [Google Scholar] [CrossRef]
- Jiang, C.; Li, J.; Li, H.; Li, Y. An improved approach to design bioretention system media. Ecol. Eng. 2019, 136, 125–133. [Google Scholar] [CrossRef]
- You, Z.; Zhang, L.; Pan, S.-Y.; Chiang, P.-C.; Pei, S.; Zhang, S. Performance evaluation of modified bioretention systems with alkaline solid wastes for enhanced nutrient removal from stormwater runoff. Water Res. 2019, 161, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.S.; Lim, W.; Hu, J.Y.; Ziegler, A.; Ong, S.L. Comparison of filter media materials for heavy metal removal from urban stormwater runoff using biofiltration systems. J. Environ. Manag. 2015, 147, 24–33. [Google Scholar] [CrossRef]
- Tian, J.; Jin, J.; Chiu, P.C.; Cha, D.K.; Guo, M.; Imhoff, P.T. A pilot-scale, bi-layer bioretention system with biochar and zero-valent iron for enhanced nitrate removal from stormwater. Water Res. 2019, 148, 378–387. [Google Scholar] [CrossRef]
- Ashoori, N.; Teixido, M.; Spahr, S.; LeFevre, G.H.; Sedlak, D.L.; Luthy, R.G. Evaluation of pilot-scale biochar-amended woodchip bioreactors to remove nitrate, metals, and trace organic contaminants from urban stormwater runoff. Water Res. 2019, 154, 1–11. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Q.; You, C. Biochar Effect on Water Evaporation and Hydraulic Conductivity in Sandy Soil. Pedosphere 2016, 26, 265–272. [Google Scholar] [CrossRef]
- Liu, Z.; Dugan, B.; Masiello, C.A.; Gonnermann, H.M. Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE 2017, 12, e0179079. [Google Scholar] [CrossRef] [Green Version]
- Tirpak, R.A.; Afrooz, A.R.M.N.; Winston, R.J.; Valenca, R.; Schiff, K.; Mohanty, S.K. Conventional and amended bioretention soil media for targeted pollutant treatment: A critical review to guide the state of the practice. Water Res. 2021, 189, 116648. [Google Scholar] [CrossRef]
- Yan, H.; Zhou, Z.; Peng, C.; Liu, W.; Zhou, H.; Wang, W.; Zhang, Q. Influence of Mass Ratio of Polyols on Properties of Polycaprolactone-Polyethylene Glycol/Methylene Diphenyl Diisocyanate/Diethylene Glycol Hydrogels. J. Macromol. Sci. Part B 2017, 56, 315–323. [Google Scholar] [CrossRef]
- Nie, J.Y.; Zhu, N.W.; Lin, K.M.; Song, F.Y. Effect of soil fortified by polyurethane foam on septic tank effluent treatment. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2011, 63. [Google Scholar] [CrossRef]
- Yong, W.; Jie, L. Use of Polyurethane Foams Complex Material to Preserve Moisture and Fertility. Polym. Plast. Technol. Eng. 2007, 46, 943–947. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, Y.; Wang, C. Phosphorus Release and Adsorption Properties of Polyurethane–Biochar Crosslinked Material as a Filter Additive in Bioretention Systems. Polymers 2021, 13, 283. [Google Scholar] [CrossRef]
- Ahmed, Z.; Kim, K.P.; Shin, J. Kinetic, thermodynamic, and equilibrium studies for adsorption of ammonium ion on modified polyurethane. Desalin. Water Treat. 2015. [Google Scholar] [CrossRef]
- Yuechao, Y.; Zhaohui, T.; Yuqing, G.; Yuncong, L.; Min, Z. Biobased polymer composites derived from corn stover and feather meals as double-coating materials for controlled-release and water-retention urea fertilizers. J. Agric. Food Chem. 2013, 61. [Google Scholar] [CrossRef]
- Luft, A.; Bröder, K.; Kunkel, U.; Schulz, M.; Dietrich, C.; Baier, R.; Heininger, P.; Ternes, T. Nontarget Analysis via LC-QTOF-MS to Assess the Release of Organic Substances from Polyurethane Coating. Environ. Sci. Technol. 2017, 51. [Google Scholar] [CrossRef]
- Knicker, H. “Black nitrogen”—An important fraction in determining the recalcitrance of charcoal. Org. Geochem. 2010, 41, 947–950. [Google Scholar] [CrossRef]
- Li, P.; Lang, M.; Li, C.; Thomas, B.W.; Hao, X. Nutrient Leaching from Soil Amended with Manure and Compost from Cattle Fed Diets Containing Wheat Dried Distillers’ Grains with Solubles. Water Air Soil Pollut. 2016, 227, 393. [Google Scholar] [CrossRef]
- Jiang, C.; Li, J.; Li, H.; Li, Y. Nitrogen retention and purification efficiency from rainfall runoff via retrofitted bioretention cells. Sep. Purif. Technol. 2019, 220, 25–32. [Google Scholar] [CrossRef]
- Gai, X.; Wang, H.; Liu, J.; Zhai, L.; Liu, S.; Ren, T.; Liu, H. Effects of Feedstock and Pyrolysis Temperature on Biochar Adsorption of Ammonium and Nitrate. PLoS ONE 2014, 9, e113888. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Barreto, V.; Li, R.; Chen, G.; Hsieh, Y.P. Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2018, 133, 136–146. [Google Scholar] [CrossRef]
- Moawed, E.A.; El-Hagrasy, M.A.; Farhat, A.A.M. Application of magnetic isothiouronium polyurethane sorbent for the removal of acidic and basic dyes from wastewater. J. Clean. Prod. 2017, 157, 232–242. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Inyang, M.; Zimmerman, A.R.; Cao, X.; Pullammanappallil, P.; Yang, L. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. J. Hazard. Mater. 2011, 190, 501–507. [Google Scholar] [CrossRef]
- Gupta, N.; Gedam, V.V.; Moghe, C.; Labhasetwar, P. Comparative assessment of batch and column leaching studies for heavy metals release from Coal Fly Ash Bricks and Clay Bricks. Environ. Technol. Innov. 2019, 16, 100461. [Google Scholar] [CrossRef]
- Dechene, A.; Rosendahl, I.; Laabs, V.; Amelung, W. Sorption of polar herbicides and herbicide metabolites by biochar-amended soil. Chemosphere 2014, 109, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Al-Abed, S.R.; Jegadeesan, G.; Purandare, J.; Allen, D. Leaching behavior of mineral processing waste: Comparison of batch and column investigations. J. Hazard. Mater. 2008, 153, 1088–1092. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, S.; Tang, J.; Zhang, Y.; Cui, Y.; Su, C.; Qu, Y.; Wei, L.; Cao, H.; Quan, J. Adsorptive performance of coal based magnetic activated carbon for perfluorinated compounds from treated landfill leachate effluents. Process Saf. Environ. Prot. 2018, 117, 383–389. [Google Scholar] [CrossRef]
- Read, J.; Fletcher, T.D.; Wevill, T.; Deletic, A. Plant Traits that Enhance Pollutant Removal from Stormwater in Biofiltration Systems. Int. J. Phytoremediat. 2010, 12, 34–53. [Google Scholar] [CrossRef] [PubMed]
Media Material | ρ1 (g/cm3) | e2 | Particle Size (mm) | ωsat (%) 3 | K (cm/s) 4 | BET (m2/g) | pH | CEC (cmol/kg) | TN 5 (%) |
---|---|---|---|---|---|---|---|---|---|
Polyurethane–biochar crosslinked material (PCB) | 0.165 | 3.20 | 1–2 | 383.50 | 8.56 × 10−2 | 83.14 | 6.62 | 37.5 | 2.88 |
Hardwood biochar (HB) | 0.378 | 3.88 | <0.5 | 195.65 | 6.57 × 10−4 | 118.45 | 8.80 | 7.4 | 0.07 |
Compost (CO) | 0.314 | 1.66 | 3–5 | 267.61 | 7.62 × 10−2 | 34.10 | 7.08 | 5.3 | 1.25 |
Volcanic stone (VS) | 0.828 | 0.59 | 3–5 | 22.43 | 7.21 × 10−1 | 24.05 | 6.78 | 3.9 | 0.03 |
Material | 8 Rounds (μmol/g) | 1st Round (μmol/g) | 1st Round/8-Rounds |
---|---|---|---|
PCB-DW | 4.98 | 3.45 | 69.25% |
PCB-AS | 5.31 | 4.07 | 76.66% |
HB-DW | 0.25 | 0.16 | 62.50% |
HB-AS | 0.17 | 0.05 | 29.31% |
CO-DW | 8.98 | 2.30 | 25.66% |
CO-AS | 17.73 | 4.63 | 26.10% |
VS-DW | 0.30 | 0.10 | 33.33% |
VS-AS | 0.41 | 0.31 | 75.17% |
Material | Freundlich | Langmuir | |||||
---|---|---|---|---|---|---|---|
KF | 1/n | R2 | qmax (mg/kg) | KL | R2 | RL | |
PCB | 85.125 | 0.691 | 0.996 | 617.149 | 0.150 | 0.995 | 0.399–0.930 |
HB | 53.689 | 0.729 | 0.996 | 560.439 | 0.093 | 0.984 | 0.518–0.956 |
CO | 26.795 | 0.608 | 0.986 | 142.992 | 0.219 | 0.986 | 0.314–0.901 |
VS | 10.865 | 0.750 | 0.994 | 152.247 | 0.064 | 0.983 | 0.608–0.969 |
Columns | Concentration of the First 50 mL of Effluent (mg/L) | Total Leaching Quantities (mg) | ||
---|---|---|---|---|
Predicted | Detected | Predicted | Detected | |
PCB-Column | 50.45 | 12.94 | 43.70 | 16.82 |
HB-Column | 3.12 | 18.12 | 2.92 | 11.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Meng, Y.; Wang, C.; Wang, B. Ammonium Release and Adsorption Characters of Polyurethane–Biochar Crosslinked Material as an Additive Filler in Stormwater Treatment. Polymers 2021, 13, 1557. https://doi.org/10.3390/polym13101557
Wang Y, Meng Y, Wang C, Wang B. Ammonium Release and Adsorption Characters of Polyurethane–Biochar Crosslinked Material as an Additive Filler in Stormwater Treatment. Polymers. 2021; 13(10):1557. https://doi.org/10.3390/polym13101557
Chicago/Turabian StyleWang, Yuan, Yike Meng, Chuanyue Wang, and Bao Wang. 2021. "Ammonium Release and Adsorption Characters of Polyurethane–Biochar Crosslinked Material as an Additive Filler in Stormwater Treatment" Polymers 13, no. 10: 1557. https://doi.org/10.3390/polym13101557
APA StyleWang, Y., Meng, Y., Wang, C., & Wang, B. (2021). Ammonium Release and Adsorption Characters of Polyurethane–Biochar Crosslinked Material as an Additive Filler in Stormwater Treatment. Polymers, 13(10), 1557. https://doi.org/10.3390/polym13101557