Synthesis of Selenium-Containing Polystyrene Microspheres and Using as Catalyst for Oxidation of Acrolein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Synthesis of 1, 2-bis(2,3,5,6-tetrafluoro-4-vinylphenyl)diselane (FVPDSe)
2.4. Synthesis of Pentafluorophenyl Seleninic Acid
2.5. General Procedure for the Preparation of Diselenide-Containing Polystyrene (DSe-PS) Spheres
2.6. Oxidation Reactions
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Boyd, R. Selenium stories. Nat. Chem. 2011, 3, 570. [Google Scholar] [CrossRef]
- Schwarz, K.; Foltz, C.M. Selenium as an integral part of factor-3 against dietary necrotic liver degeneration. J. Am. Chem. Soc. 1957, 79, 3292–3293. [Google Scholar] [CrossRef]
- Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: Biochemical role as a component of glutathione peroxidase. Science 1973, 179, 588–590. [Google Scholar] [CrossRef] [PubMed]
- Zundel, G. Hydration structure and intermolecular interaction in polyelectrolytes. Angew. Chem. Int. Ed. 1969, 8, 499–509. [Google Scholar] [CrossRef]
- Li, Q.L.; Zhang, Y.Y.; Chen, Z.J.; Pan, X.Q.; Zhang, Z.B.; Zhu, J.; Zhu, X.L. Organoselenium chemistry-based polymer synthesis. Org. Chem. Front. 2020, 7, 2815–2841. [Google Scholar] [CrossRef]
- Kim, H.; Ku, B.C.; Goh, M.; Ko, H.C.; Ando, S.; You, N.H. Synergistic effect of sulfur and chalcogen atoms on the enhanced refractive indices of polyimides in the visible and near-infrared regions. Macromolecules 2019, 52, 827–834. [Google Scholar] [CrossRef]
- Jiang, H.N.; Pan, X.Q.; Li, N.; Zhang, Z.B.; Zhu, J.; Zhu, X.L. Selenide-containing high refractive index polymer material with adjustable refractive index and Abbe’s number. React. Funct. Polym. 2017, 111, 1–6. [Google Scholar] [CrossRef]
- Zhao, J.; Pan, X.Q.; Zhu, J.; Zhu, X.L. Novel aiegen-functionalized diselenide-crosslinked polymer gels as fluorescent probes and drug release carriers. Polymers 2020, 12, 551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Cao, W.; Yi, Y.; Xu, H.P. Dual redox responsive coassemblies of diselenide-containing block copolymers and polymer lipids. Langmuir 2014, 30, 5628–5636. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.B.; Cao, W.; Yu, Y.; Xu, H.P. Visible-light-induced self-healing diselenide-containing polyurethane elastomer. Adv. Mater. 2015, 27, 7740–7745. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.B.; Fan, F.Q.; Sun, C.X.; Yu, Y.; Xu, H.P. Visible light-induced plasticity of shape memory polymers. ACS Appl. Mater. Interfaces 2017, 9, 33169–33175. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.F.; Zhang, Y.Y.; Pan, X.Q.; Li, N.; Zhu, J.; Zhu, X.L. Selenium-doped phenolic resin spheres: Ultra-high adsorption capacity of noble metals. React. Funct. Polym. 2019, 142, 223–230. [Google Scholar] [CrossRef]
- Dai, Y.H.; Zheng, K.; Tan, Y.Z.; Xiang, W.T.; Xianyu, B.R.; Xu, H.P. Fischesserite-inspired recyclable se-polyurethanes for selective gold extraction. Adv. Sustain. Syst. 2020, 4, 119514. [Google Scholar] [CrossRef]
- Bhand, G.R.; Chaure, N.B. Synthesis of CdTe, CdSe and CdTe/CdSe core/shell QDs from wet chemical colloidal method. Mater. Sci. Semicond. Process. 2017, 68, 279–287. [Google Scholar] [CrossRef]
- Singh, F.V.; Wirth, T. Selenium reagents as catalysts. Catal. Sci. Technol. 2019, 9, 1073–1091. [Google Scholar] [CrossRef]
- Nomura, M.; Tobita, H.; Suzuki, K. Emulsion polymerization: Kinetic and mechanistic aspects. Polym. Part. 2005, 175, 1–128. [Google Scholar]
- Nakashima, T.; Yamada, Y.; Yoshizawa, H. Synthesis of monodisperse polystyrene microspheres by dispersion polymerization using sodium polyaspartate. Colloid Polym. Sci. 2007, 285, 1487–1493. [Google Scholar] [CrossRef]
- Kim, K.; Kim, D. High-performance liquid chromatography separation characteristics of molecular-imprinted poly (methacrylic acid) microparticles prepared by suspension polymerization. J. Appl. Polym. Sci. 2005, 96, 200–212. [Google Scholar] [CrossRef]
- Pardeshi, S.; Singh, S.K. Precipitation polymerization: A versatile tool for preparing molecularly imprinted polymer beads for chromatography applications. Rsc Adv. 2016, 6, 23525–23536. [Google Scholar] [CrossRef]
- Van Der Toorn, J.C.; Kemperman, G.; Sheldon, R.A.; Arends, I.W.C.E. Diphenyldiselenide-catalyzed selective oxidation of activated alcohols with tert-butyl hydroperoxide: New mechanistic insights. J. Org. Chem. 2009, 74, 3085–3089. [Google Scholar] [CrossRef]
- Guo, R.Z.; Huang, J.C.; Zhao, X.D. Organoselenium-catalyzed oxidative allylic fluorination with electrophilic N-F reagent. Acs Catal. 2018, 8, 926–930. [Google Scholar] [CrossRef]
- Browne, D.M.; Niyomura, O.; Wirth, T. Catalytic use of selenium electrophiles in cyclizations. Org. Lett. 2007, 9, 3169–3171. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Ye, J.Q.; Zhang, X.; Ding, Y.H.; Xu, Q. Recyclable (PhSe)2-catalyzed selective oxidation of isatin by H2O2: A practical and waste-free access to isatoic anhydride under mild and neutral conditions. Catal. Sci. Technol. 2015, 5, 4830–4838. [Google Scholar] [CrossRef]
- Francavilla, C.; Bright, F.V.; Detty, M.R. Dendrimeric catalysts for the activation of hydrogen peroxide. Increasing activity per catalytic phenylseleno group in successive generations. Org. Lett. 1999, 1, 1043–1046. [Google Scholar] [CrossRef]
- Bennett, S.M.; Tang, Y.; McMaster, D.; Bright, F.V.; Detty, M.R. A xerogel-sequestered selenoxide catalyst for brominations with hydrogen peroxide and sodium bromide in an aqueous environment. J. Org. Chem. 2008, 73, 6849–6852. [Google Scholar] [CrossRef]
- Barrero, A.F.; Del Moral, J.F.Q.; Herrador, M.M.; Cortes, M.; Arteaga, P.; Catalan, J.V.; Sanchez, E.M.; Arteaga, J.F. Solid-phase selenium-catalyzed selective allylic chlorination of polyprenoids: Facile syntheses of biologically active terpenoids. J. Org. Chem. 2006, 71, 5811–5814. [Google Scholar] [CrossRef]
- Rangraz, Y.; Nemati, F.; Elhampour, A. Diphenyl diselenide immobilized on magnetic nanoparticles: A novel and retrievable heterogeneous catalyst in the oxidation of aldehydes under mild and green conditions. J. Colloid Interface Sci. 2018, 509, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.H.; Xu, W.J.; Stefka, S.; Demco, D.E.; Kharandiuk, T.; Ivasiv, V.; Nebesnyi, R.; Petrovskii, V.S.; Potemkin, I.I.; Pich, A. Selenium-modified microgels as bio-inspired oxidation catalysts. Angew. Chem. Int. Ed. 2019, 58, 9791–9796. [Google Scholar] [CrossRef]
- Lu, W.H.; Pan, X.Q.; Zhang, Z.B.; Zhu, J.; Zhou, N.C.; Zhu, X.L. A degradable cross-linked polymer containing dynamic covalent selenide bond. Polym. Chem. 2017, 8, 3874–3880. [Google Scholar] [CrossRef]
- Handoko; Benslimane, Z.; Arora, P.S. Diselenide-mediated catalytic functionalization of hydrophosphoryl compounds. Org. Lett. 2020, 22, 5811–5816. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Pan, S.; Gao, S.; Li, T.; Xu, H. CO/chemosensitization/antiangiogenesis synergistic therapy with H2O2-responsive diselenide-containing polymer. Biomaterials 2021, 271, 120721. [Google Scholar] [CrossRef] [PubMed]
- Pikh, Z.; Ivasiv, V. Oxidation of unsaturated aldehydes by hydrogen peroxide in alcohols medium. Chem. Chem. Technol. 2012, 6, 9–14. [Google Scholar] [CrossRef]
Sample | St (g) | FVPDSe (g) | DVB (g) | KPS (g) | SLS (g) | H2O (mL) | Particle Size (nm) 1 |
---|---|---|---|---|---|---|---|
Se-1-D-2-20 | 1.0 | 0.066 | 0.132 | 0.02 | 0.005 | 20 | 190 |
Se-1-D-2-40 | 1.0 | 0.066 | 0.132 | 0.04 | 0.01 | 40 | 166 |
Se-1-D-2-60 | 1.0 | 0.066 | 0.132 | 0.04 | 0.01 | 60 | 141 |
Se-1-D-1-40 | 1.0 | 0.100 | 0.100 | 0.04 | 0.01 | 40 | 148 |
Se-1-D-3-40 | 1.0 | 0.05 | 0.15 | 0.04 | 0.01 | 40 | 149 |
Se-1-D-4-40 | 1.0 | 0.04 | 0.16 | 0.04 | 0.01 | 40 | 167 |
Catalyst | Molar Fraction of MA in the Products |
---|---|
H2SeO3 [32] | 0.3–0.5 |
Selenium-Modified Microgels [28] | 0.9–0.95 |
DSe-PS | 1.0 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Pan, X.; Zhu, J. Synthesis of Selenium-Containing Polystyrene Microspheres and Using as Catalyst for Oxidation of Acrolein. Polymers 2021, 13, 1632. https://doi.org/10.3390/polym13101632
Zhang Y, Pan X, Zhu J. Synthesis of Selenium-Containing Polystyrene Microspheres and Using as Catalyst for Oxidation of Acrolein. Polymers. 2021; 13(10):1632. https://doi.org/10.3390/polym13101632
Chicago/Turabian StyleZhang, Yuanyuan, Xiangqiang Pan, and Jian Zhu. 2021. "Synthesis of Selenium-Containing Polystyrene Microspheres and Using as Catalyst for Oxidation of Acrolein" Polymers 13, no. 10: 1632. https://doi.org/10.3390/polym13101632
APA StyleZhang, Y., Pan, X., & Zhu, J. (2021). Synthesis of Selenium-Containing Polystyrene Microspheres and Using as Catalyst for Oxidation of Acrolein. Polymers, 13(10), 1632. https://doi.org/10.3390/polym13101632