Tunable Waveguides Couplers Based on HPDLC for See-Through Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martinez, C.; Krotov, V.; Meynard, B.; Fowler, D. See-through holographic retinal projection display concept. Optica 2018, 5, 1200–1209. [Google Scholar] [CrossRef] [Green Version]
- Mukawa, H.; Akutsu, K.; Sugiura, M.; Hashimoto, S. 4.2: Novel Virtual Image Optics for Reflective Microdisplays (Optics). In Proceedings of the 20th International Display Research Conference, Palm Beach, FL, USA, 25–28 September 2000. [Google Scholar]
- Amitai, Y. P-27: A two-dimensional aperture expander for ultra-compact, high-performance head-worn displays. SID Symp. Dig. Tech. Pap. 2005, 36, 360–363. [Google Scholar] [CrossRef]
- Shen, Z.; Weng, Y.; Zhang, Y.; Wang, C.; Liu, A.; Li, X. Holographic Recording Performance of Acrylate-Based Photopolymer under Different Preparation Conditions for Waveguide Display. Polymers 2021, 13, 936. [Google Scholar] [CrossRef]
- Guo, J.; Tu, Y.; Yang, L.; Wang, L.; Wang, B. Design of a multiplexing grating for color holographic waveguide. Opt. Eng. 2015, 54, 125105. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, J.; Han, J.; Li, X.; Yang, F.; Wang, X.; Hu, B.; Wang, Y. Improved holographic waveguide display system. Appl. Opt. 2015, 54, 3645–3649. [Google Scholar] [CrossRef]
- Neipp, C.; Francés, J.; Martínez, F.J.; Fernández, R.; Alvarez, M.L.; Bleda, S.; Ortuño, M.; Gallego, S. Optimization of Photopolymer Materials for the Fabrication of a Holographic Waveguide. Polymers 2017, 9, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, R.; Bleda, S.; Gallego, S.; Neipp, C.; Márquez, A.; Tomita, Y.; Pascual, I.; Beléndez, A. Holographic waveguides in photopolymers. Opt. Express 2019, 27, 827–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruder, F.-K.; Fäcke, T.; Rölle, T. The Chemistry and Physics of Bayfol® HX Film Holographic Photopolymer. Polymers 2017, 9, 472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noiret, N.; Meyer, C.; Lougnot, D.J. Photopolymers for holographic recording: V. Self-processing systems with near infrared sensitivity. Pure Appl. Opt. J. Eur. Opt. Soc. Part A 1994, 3, 55–71. [Google Scholar] [CrossRef]
- Fan, F.; Liu, Y.; Hong, Y.; Zang, J.; Kang, G.; Zhao, T.; Tan, X.; Shimura, T. Volume polarization holographic recording in phenanthrenequinone doped poly(MMA-Co-BzMA) photopolymer. Chem. Lett. 2018, 47, 520–523. [Google Scholar] [CrossRef]
- Steckman, G.J.; Shelkovnikov, V.; Berezhnaya, V.; Gerasimova, T.; Solomatine, I.; Psaltis, D. Holographic recording in a photopolymer by optically induced detachment of chromophores. Opt. Lett. 2000, 25, 607–609. [Google Scholar] [CrossRef] [Green Version]
- Gallego, S.; Ortuño, M.; Neipp, C.; Márquez, A.; Beléndez, A.; Pascual, I.; Kelly, J.V.; Sheridan, J.T. 3 Dimensional analysis of holographic photopolymers based memories. Opt. Express 2005, 13, 3543–3557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaia, R.A.; Dennis, C.L.; Natarajan, L.V.; Tondiglia, V.P.; Tomlin, D.W.; Bunning, T.J. One step, Micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique. Adv. Mater. 2001, 13, 1570–1574. [Google Scholar] [CrossRef]
- Chen, J.; Bos, P.J.; Vithana, H.; Johnson, D.L. An electro-optically controlled liquid crystal diffraction grating. Appl. Phys. Lett. 1995, 67, 2588–2590. [Google Scholar] [CrossRef]
- Suzuki, N.; Tomita, Y.; Kojima, T. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films. Appl. Phys. Lett. 2002, 81, 4121–4123. [Google Scholar] [CrossRef]
- Tomita, Y.; Urano, H.; Fukamizu, T.; Kametani, Y.; Nishimura, N.; Odoi, K. Nanoparticle-polymer composite volume holographic gratings dispersed with ultrahigh-refractive-index hyperbranched polymer as organic nanoparticles. Opt. Lett. 2016, 41, 1281–1284. [Google Scholar] [CrossRef]
- Miki, M.; Ohira, R.; Tomita, Y. Optical properties of electrically tunable two-dimensional photonic lattice structures formed in a holographic polymer-dispersed liquid crystal film: Analysis and experiment. Materials 2014, 7, 3677–3698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bošnjaković, D.; Sebastián, N.; Drevenšek-Olenik, I. Magnetically Tunable Liquid Crystal-Based Optical Diffraction Gratings. Polymers 2020, 12, 2355. [Google Scholar] [CrossRef]
- Neipp, C.; Taleb, S.I.; Francés, J.; Fernández, R.; Puerto, D.; Calzado, E.M.; Gallego, S.; Beléndez, A. Analysis of the Imaging Characteristics of Holographic Waveguides Recorded in Photopolymers. Polymers 2020, 12, 1485. [Google Scholar] [CrossRef]
- Kogelnik, H. Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 1969, 48, 2909–2947. [Google Scholar] [CrossRef]
- Gallego, S.; Ortuño, M.O.; Neipp, C.; Márquez, A.; Beléndez, A.; Pascual, I.; Kelly, J.V.; Sheridan, J.T. Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers. Opt. Express 2005, 13, 1939–1947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, R.; Gallego, S.; Navarro-Fuster, V.; Neipp, C.; Francés, J.; Fenoll, S.; Pascual, I.; Beléndez, A. Dimensional changes in slanted diffraction gratings recorded in photopolymers. Opt. Mater. Express 2016, 6, 3455–3468. [Google Scholar] [CrossRef] [Green Version]
- Vojtíšek, P.; Květoň, M.; Richter, I. Complex method for angular-spectral analysis of volume phase diffraction gratings recorded in photopolymers. J. Eur. Opt. Soc. Rapid Publ. Europe 2016, 11, 16009. [Google Scholar] [CrossRef] [Green Version]
- Zhihui Diao, Z.; Kong, L.; Yan, J.; Guo, J.; Liu, X.; Xuan, L.; Yu, L. Electrically tunable holographic waveguide display based on holographic polymer dispersed liquid crystal grating. Chin. Opt. Lett. 2019, 17, 012301. [Google Scholar] [CrossRef]
- Fukuda, Y.; Tomita, Y. Spatial Frequency Responses of Anisotropic Refractive Index Gratings Formed in Holographic Polymer Dispersed Liquid Crystals. Materials 2016, 9, 188. [Google Scholar] [CrossRef] [Green Version]
- Fenoll, S.; Brocal, F.; Segura, J.D.; Ortuño, M.; Beléndez, A.; Pascual, I. Holographic Characteristics of Photopolymers Containing Different Mixtures of Nematic Liquid Crystals. Polymers 2019, 11, 325. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Ni, M.; Bi, S.; Liao, Y.; Xie, X. Highly diffractive, reversibly fast responsive gratings formulated through holography. RSC Adv. 2014, 4, 4420–4426. [Google Scholar] [CrossRef]
- Kalkar, A.K.; Kunte, V.V. Electro-optical studies on polymer dispersed liquid crystal composite films. II. Composites of PVB/E44 and PMMABA/E44. Mol. Cryst. Liq. Cryst. 2002, 383, 1–25. [Google Scholar] [CrossRef]
Component | Solution 0 | Solution 1 | Solution 2 | Solution 3 |
---|---|---|---|---|
YEt (g) | 0.001 | 0.001 | 0.001 | 0.001 |
NMP (μL) | 469 | 0 | 0 | 200 |
NVP (μL) | 0 | 50 | 50 | 50 |
OA (μL) | 144 | 300 | 400 | 300 |
NPG (g) | 0.01 | 0.01 | 0.01 | 0.01 |
LC036 (μL) | 450 | 750 | 750 | 750 |
DPHPA (g) | 1.1 | 1.4 | 1.3 | 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallego, S.; Puerto, D.; Morales-Vidal, M.; Ramirez, M.G.; Taleb, S.I.; Hernández, A.; Ortuño, M.; Neipp, C. Tunable Waveguides Couplers Based on HPDLC for See-Through Applications. Polymers 2021, 13, 1858. https://doi.org/10.3390/polym13111858
Gallego S, Puerto D, Morales-Vidal M, Ramirez MG, Taleb SI, Hernández A, Ortuño M, Neipp C. Tunable Waveguides Couplers Based on HPDLC for See-Through Applications. Polymers. 2021; 13(11):1858. https://doi.org/10.3390/polym13111858
Chicago/Turabian StyleGallego, Sergi, Daniel Puerto, Marta Morales-Vidal, Manuel G. Ramirez, Soumia I. Taleb, Antonio Hernández, Manuel Ortuño, and Cristian Neipp. 2021. "Tunable Waveguides Couplers Based on HPDLC for See-Through Applications" Polymers 13, no. 11: 1858. https://doi.org/10.3390/polym13111858
APA StyleGallego, S., Puerto, D., Morales-Vidal, M., Ramirez, M. G., Taleb, S. I., Hernández, A., Ortuño, M., & Neipp, C. (2021). Tunable Waveguides Couplers Based on HPDLC for See-Through Applications. Polymers, 13(11), 1858. https://doi.org/10.3390/polym13111858