Adhesive Resins with High Shelf-Life Stability Based on Tetra Unsaturated Monomers with Tertiary Amines Moieties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis of Monomer TTMEE and TTAC
2.3. Formulation of Adhesive Resin
2.4. Real-Time Polymerization Kinetics
2.5. Degree of Double Bond Conversion After Shelf-Life Simulation
2.6. Sensitivity to Ambient Light
2.7. Ultimate Tensile Strength (UTS)
2.8. Color Alteration and Translucency Parameter
2.9. Micro-Tensile Bond Strength (µ-TBS)
2.10. Confocal Microscopy
2.11. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pashley, D.H.; Tay, F.R.; Breschi, L.; Tjäderhane, L.; Carvalho, R.M.; Carrilho, M.; Tezvergil-Mutluay, A. State of the art etch-and-rinse adhesives. Dent. Mater. 2011, 27, 1–16. [Google Scholar] [CrossRef]
- Migliau, G. Classification review of dental adhesive systems: From the IV generation to the universal type. Ann. Stomatol. 2017, 8, 1. [Google Scholar] [CrossRef]
- Fugolin, A.P.P.; Navarro, O.; Logan, M.G.; Huynh, V.; França, C.M.; Ferracane, J.L.; Pfeifer, C.S. Synthesis of di- and triacrylamides with tertiary amine cores and their evaluation as monomers in dental adhesive interfaces. Acta Biomater. 2020, 115, 148–159. [Google Scholar] [CrossRef]
- Moreira, A.G.; Cuevas-Suárez, C.E.; da Rosa, W.L.d.O.; Ogliari, A.O.; Petzhold, C.L.; Piva, E.; Ogliari, F.A.; Lima, G.d.S. Piperonyl methacrylate: Copolymerizable coinitiator for adhesive compositions. J. Dent. 2018, 79, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Breloy, L.; Losantos, R.; Sampedro, D.; Marazzi, M.; Malval, J.-P.; Heo, Y.; Akimoto, J.; Ito, Y.; Brezová, V.; Versace, D.-L. Allyl amino-thioxanthone derivatives as highly efficient visible light H-donors and co-polymerizable photoinitiators. Polym. Chem. 2020, 11, 4297–4312. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Chang, F. Kinetics and curing mechanism of epoxy and boron trifluoride monoethyl amine complex system. J. Polym. Sci. Part A Polym. Chem. 1999, 37, 3614–3624. [Google Scholar] [CrossRef]
- Herrera-González, A.M.; D’Accorso, N.B.; Cuevas-Suárez, C.E.; Fascio, M.L.; García-Serrano, J.; Alho, M.M.; Zamarripa-Calderón, J.E. Composite resins based on novel and highly reactive bisglycidyl methacrylate monomers. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Herrera-González, A.M.; Caldera-Villalobos, M.; Pérez-Mondragón, A.A.; Cuevas-Suárez, C.E.; González-López, J.A. Analysis of Double Bond Conversion of Photopolymerizable Monomers by FTIR-ATR Spectroscopy. J. Chem. Educ. 2019, 96, 1786–1789. [Google Scholar] [CrossRef]
- Almeida, S.M.; Meereis, C.T.W.W.; Leal, F.B.; Carvalho, R.V.; Boeira, P.O.; Chisini, L.A.; Cuevas-Suárez, C.E.; Lima, G.S.; Piva, E. Evaluation of alternative photoinitiator systems in two-step self-etch adhesive systems. Dent. Mater. 2020, 36, e29–e37. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Suárez, C.E.; Ramos, T.S.; Rodrigues, S.B.; Collares, F.M.; Zanchi, C.H.; Lund, R.G.; da Silva, A.F.; Piva, E. Impact of shelf-life simulation on bonding performance of universal adhesive systems. Dent. Mater. 2019. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standarization. ISO 4049:2009 Dentistry Polymer Based Restorative Materials; Vernier: Geneva, Switzerland, 2009. [Google Scholar]
- Kameyama, A.; Haruyama, A.; Abo, H.; Kojima, M.; Nakazawa, Y.; Muramatsu, T. Influence of solvent evaporation on ultimate tensile strength of contemporary dental adhesives. Appl. Adhes. Sci. 2019, 7. [Google Scholar] [CrossRef]
- Ritter, D.D.; Rocha, R.O.; Soares, F.Z.M.; Lenzi, T.L. Do adhesive systems influence the color match of resin composites? J. Appl. Biomater. Funct. Mater. 2016, 14, 212–216. [Google Scholar] [CrossRef]
- Sharma, G.; Wu, W.; Dalal, E.N. The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Res. Appl. 2005, 30, 21–30. [Google Scholar] [CrossRef]
- Armstrong, S.; Breschi, L.; Özcan, M.; Pfefferkorn, F.; Ferrari, M.; Van Meerbeek, B. Academy of Dental Materials guidance on in vitro testing of dental composite bonding effectiveness to dentin/enamel using micro-tensile bond strength (μTBS) approach. Dent. Mater. 2017, 33, 133–143. [Google Scholar] [CrossRef]
- Paravina, R.D.; Ghinea, R.; Herrera, L.J.; Bona, A.D.; Igiel, C.; Linninger, M.; Sakai, M.; Takahashi, H.; Tashkandi, E.; del Mar Perez, M. Color Difference Thresholds in Dentistry. J. Esthet. Restor. Dent. 2015, 27, S1–S9. [Google Scholar] [CrossRef] [PubMed]
- Leprince, J.G.; Palin, W.M.; Hadis, M.A.; Devaux, J.; Leloup, G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent. Mater. 2013, 29, 139–156. [Google Scholar] [CrossRef]
- Jansen, J.F.G.A.; Dias, A.A.; Dorschu, M.; Coussens, B. Fast monomers: Factors affecting the inherent reactivity of acrylate monomers in photoinitiated acrylate polymerization. Macromolecules 2003, 36, 3861–3873. [Google Scholar] [CrossRef]
- Moszner, N.; Salz, U. Recent developments of new components for dental adhesives and composites. Macromol. Mater. Eng. 2007, 292, 245–271. [Google Scholar] [CrossRef]
- Sabbagh, J.; Nabbout, F.; Jabbour, E.; Leloup, G. The effect of expiration date on mechanical properties of resin composites. J. Int. Soc. Prev. Community Dent. 2018. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. Resin composite—State of the art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef]
- Hadis, M.A.; Shortall, A.C.; Palin, W.M. Competitive light absorbers in photoactive dental resin-based materials. Dent. Mater. 2012. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.; Sato, Y.; Uno, S.; Pereira, P.N.R.; Sano, H. Effects of mechanical properties of adhesive resins on bond strength to dentin. Dent. Mater. 2002. [Google Scholar] [CrossRef]
- Calheiros, F.C.; Daronch, M.; Rueggeberg, F.A.; Braga, R.R. Degree of conversion and mechanical properties of a BisGMA:TEGDMA composite as a function of the applied radiant exposure. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 84, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Soh, M.S.; Yap, A.U.J. Influence of curing modes on crosslink density in polymer structures. J. Dent. 2004, 32, 321–326. [Google Scholar] [CrossRef]
- Alabdulwahhab, B.M.; AlShethry, M.A.; AlMoneef, M.A.; AlManie, M.A.; AlMaziad, M.M.; AlOkla, M.S. The Effect of Dental Adhesive on Final Color Match of Direct Laminate Veneer (DLV): In Vitro Study. J. Esthet. Restor. Dent. 2015, 27, 307–313. [Google Scholar] [CrossRef]
- Gaintantzopoulou, M.; Kakaboura, A.; Loukidis, M.; Vougiouklakis, G. A study on colour stability of self-etching and etch-and-rinse adhesives. J. Dent. 2009, 37, 390–396. [Google Scholar] [CrossRef] [PubMed]
Group | Formulation wt.% | ||||||
---|---|---|---|---|---|---|---|
BisGMA | TEGDMA | HEMA | TTME | TTAC | CQ | EDAB | |
EDAB | 50 | 25 | 25 | - | - | 0.5 | 1 |
TTME | 40 | 20 | 20 | 20 | - | 0.5 | - |
TTAC | 40 | 20 | 20 | - | 20 | 0.5 | - |
Adhesive Resin | Degree of Double Bond Conversion (%) | Sensitivity to Ambient Light (%) | Ultimate Tensile Strength (MPa) |
---|---|---|---|
EDAB Adhesive | 71.71 (0.97) b | 7.57 (0.21) a | 9.42 (1.40) a |
TTME Adhesive | 71.63 (0.86) b | 0.64 (0.24) b | 9.65 (2.78) a |
TTAC Adhesive | 75.80 (1.35) a | 0.31 (0.24) b | 9.64 (2.06) a |
Experimental Group | µ-TBS (MPa) | Failure Mode (%) | ||||
---|---|---|---|---|---|---|
Cohesive within Composite | Cohesive within Dentin | Adhesive | Mixed | Pre-Testing Failure | ||
EDAB Adhesive | 16.33 (2.04) a | 9 | 9 | 26 | 52 | 4 |
TTME Adhesive | 17.23 (1.98) a | 4 | 20 | 32 | 32 | 12 |
TTAC Adhesive | 17.14 (3.19) a | 4 | 25 | 21 | 42 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Mondragón, A.A.; Cuevas-Suárez, C.E.; García-Serrano, J.; Trejo-Carbajal, N.; Lobo-Guerrero, A.; Herrera-González, A.M. Adhesive Resins with High Shelf-Life Stability Based on Tetra Unsaturated Monomers with Tertiary Amines Moieties. Polymers 2021, 13, 1944. https://doi.org/10.3390/polym13121944
Pérez-Mondragón AA, Cuevas-Suárez CE, García-Serrano J, Trejo-Carbajal N, Lobo-Guerrero A, Herrera-González AM. Adhesive Resins with High Shelf-Life Stability Based on Tetra Unsaturated Monomers with Tertiary Amines Moieties. Polymers. 2021; 13(12):1944. https://doi.org/10.3390/polym13121944
Chicago/Turabian StylePérez-Mondragón, Alma Antonia, Carlos Enrique Cuevas-Suárez, Jesús García-Serrano, Nayely Trejo-Carbajal, A. Lobo-Guerrero, and Ana M. Herrera-González. 2021. "Adhesive Resins with High Shelf-Life Stability Based on Tetra Unsaturated Monomers with Tertiary Amines Moieties" Polymers 13, no. 12: 1944. https://doi.org/10.3390/polym13121944
APA StylePérez-Mondragón, A. A., Cuevas-Suárez, C. E., García-Serrano, J., Trejo-Carbajal, N., Lobo-Guerrero, A., & Herrera-González, A. M. (2021). Adhesive Resins with High Shelf-Life Stability Based on Tetra Unsaturated Monomers with Tertiary Amines Moieties. Polymers, 13(12), 1944. https://doi.org/10.3390/polym13121944