Novel Polyelectrolytes Obtained by Direct Alkylation and Ion Replacement of a New Aromatic Polyamide Copolymer Bearing Pyridinyl Pendant Groups
Abstract
:1. Introduction
2. Materials and Experimental Methodology
2.1. Materials
2.2. Experimental Part
2.2.1. Characterization Techniques
2.2.2. Synthesis of 3,5-diamino-N-(pyridin-4-ylmethyl)benzamide (PyMDA)
2.2.3. Polymer and Polyelectrolytes Preparation
2.3. Films Preparation
2.4. Absorption Tests
2.5. Evaluation of Membrane Performance
2.5.1. Membrane Preparation
2.5.2. Water Flux and Salt Rejection
3. Result and Discussion
3.1. Thermal Properties of Polymers
3.2. Mechanical Properties of Polymers
3.3. Hydrophilic and Hydrophobic Properties of Polymers
3.4. Preliminary Evaluation of Membrane Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avtar, R.; Tripathi, S.; Aggarwal, A.K.; Kumar, P. Population–Urbanization–Energy Nexus: A Review. Resources 2019, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Yan, K.; Singh, T.; Mo, D. Domestic and International Drivers of the Demand for Water Resources in the Context of Water Scarcity: A Cross-Country Study. J. Risk Financ. Manag. 2020, 13, 255. [Google Scholar] [CrossRef]
- Tripathi, A.D.; Mishra, R.; Maurya, K.K.; Singh, R.B.; Wilson, D.W. Estimates for World Population and Global Food Availability for Global Health. Role Funct. Food Secur. Glob. Health 2019, 3–24. [Google Scholar] [CrossRef]
- Jorquera, H.; Montoya, L.D.; Rojas, N.Y. Chapter 7-Urban Air Pollution. Urban. Clim. Latin Am. 2019, 137–165. [Google Scholar] [CrossRef]
- Dolan, F.; Lamontagne, J.; Link, R.; Hejazi, M.; Reed, P.; Edmonds, J. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Falkenmark, M. Water resilience and human life support—Global outlook for the next half century. Int. J. Water Resour. Dev. 2020, 36, 377–396. [Google Scholar] [CrossRef] [Green Version]
- Ezugbe, E.O.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Quist-Jensen, C.; Macedonio, F.; Drioli, E. Membrane technology for water production in agriculture: Desalination and wastewater reuse. Desalination 2015, 364, 17–32. [Google Scholar] [CrossRef]
- Ravanchi, M.T.; Kaghazchi, T.; Kargari, A. Application of membrane separation processes in petrochemical industry: A review. Desalination 2009, 235, 199–244. [Google Scholar] [CrossRef]
- Doan, H.; Lohi, A. Fouling in Membrane Filtration and Remediation Methods. Mass Transf. Adv. Sustain. Energy Environ. Oriented Numer. Modeling 2013, 195–219. [Google Scholar] [CrossRef] [Green Version]
- Lau, W.J.; Ismail, A.F.; Misdan, N.; Kassim, M.A. A recent progress in thin film composite membrane: A review. Desalination 2012, 287, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Nataraj, S.; Hosamani, K.; Aminabhavi, T. Nanofiltration and reverse osmosis thin film composite membrane module for the removal of dye and salts from the simulated mixtures. Desalination 2009, 249, 12–17. [Google Scholar] [CrossRef]
- Mulder, M. Chapter 3-MEMBRANE PREPARATION | Phase Inversion Membranes. Encycl. Sep. Sci. 2000, 3331–3346. [Google Scholar] [CrossRef]
- Kim, K.; Lee, K.; Cho, K.; Park, C. Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment. J. Membr. Sci. 2002, 199, 135–145. [Google Scholar] [CrossRef]
- Liu, M.; Wu, D.; Yu, S.; Gao, C. Influence of the polyacyl chloride structure on the reverse osmosis performance, surface properties and chlorine stability of the thin-film composite polyamide membranes. J. Membr. Sci. 2009, 326, 205–214. [Google Scholar] [CrossRef]
- Cadotte, J.E. Interfacially Synthesized Reverse Osmosis Membrane. U.S. Patent 4277344A, 7 July 1981. [Google Scholar]
- Garcia, J.; García, F.C.; Serna, F.; De La Peña, J.L. High-performance aromatic polyamides. Prog. Polym. Sci. 2010, 35, 623–686. [Google Scholar] [CrossRef]
- Kwak, S.-Y.; Jung, S.G.; Kim, S.H. Structure-Motion-Performance Relationship of Flux-Enhanced Reverse Osmosis (RO) Membranes Composed of Aromatic Polyamide Thin Films. Environ. Sci. Technol. 2001, 35, 4334–4340. [Google Scholar] [CrossRef]
- Agenson, K.O.; Urase, T. Change in membrane performance due to organic fouling in nanofiltration (NF)/reverse osmosis (RO) applications. Sep. Purif. Technol. 2007, 55, 147–156. [Google Scholar] [CrossRef]
- Shintani, T.; Matsuyama, H.; Kurata, N. Development of a chlorine-resistant polyamide reverse osmosis membrane. Desalination 2007, 207, 340–348. [Google Scholar] [CrossRef]
- Hirose, M.; Ito, H.; Kamiyama, Y. Effect of skin layer surface structures on the flux behaviour of RO membranes. J. Membr. Sci. 1996, 121, 209–215. [Google Scholar] [CrossRef]
- Al-Jeshi, S.; Neville, A. An investigation into the relationship between flux and roughness on RO membranes using scanning probe microscopy. Desalination 2006, 189, 221–228. [Google Scholar] [CrossRef]
- Ruiz, J.A.R.; Trigo-López, M.; García, F.C.; García, J.M. Functional Aromatic Polyamides. Polymer 2017, 9, 414. [Google Scholar] [CrossRef] [Green Version]
- Espeso, J.G.; de la campa, A.G.; Lozano, A.G.; de abajo, J. Synthesis and Characterization of New Soluble Aromatic Polyamides Based on 4-(1-Adamantyl)-1,3-bis(4-aminophenoxy)benzene. J. Polym. Sci. Part. A Polym. Chem. 2000, 38, 1014–1023. [Google Scholar] [CrossRef]
- Hsiao, S.-H.; Chen, C.-W.; Liou, G.-S. Novel aromatic polyamides bearing pendent diphenylamino or carbazolyl groups. J. Polym. Sci. Part. A Polym. Chem. 2004, 42, 3302–3313. [Google Scholar] [CrossRef]
- Terraza, C.A.; Tagle, L.H.; Tundidor-Camba, A.; González-Henríquez, C.; Ortiz, P.; Coll, D. Poly(amide)s obtained from 4-(4-((4-(4-aminophenoxy)phenyl)diphenylsilyl)phenoxy)benzenamine and dicarboxylic acids containing diphenylsilarylene units. Synth. Charact. Eur. Polym. J. 2012, 48, 649–661. [Google Scholar] [CrossRef]
- Ye, L.; Wang, L.; Jie, X.; Yu, C.; Kang, G.; Cao, Y. Effect of hexafluoroisopropylidene group contents and treatment temperature on the performance of thermally rearranged poly(hydroxyamide)s membranes. J. Membr. Sci. 2020, 595, 117540. [Google Scholar] [CrossRef]
- Patil, A.; Medhi, M.; Sadavarte, N.; Wadgaonkar, P.; Maldar, N. Synthesis and characterization of novel aromatic–aliphatic polyamides from bis-[(4-aminobenzyl)-4-benzamide] ether. Mater. Sci. Eng. B 2010, 168, 111–116. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Van der Bruggen, B. Polyelectrolytes self-assembly: Versatile membrane fabrication strategy. J. Mater. Chem. A 2020, 8, 20870–20896. [Google Scholar] [CrossRef]
- Singh, P.K.; Singh, V.K.; Singh, M. Zwitterionic Polyelectrolytes: A Review. e-Polymers 2007, 7. [Google Scholar] [CrossRef]
- Kim, G.-T.; Appetecchi, G.B.; Alessandrini, F.; Passerini, S. Solvent-free, PYR1ATFSI ionic liquid-based ternary polymer electrolyte systems: I. Electrochemical characterization. J. Power Sources 2007, 171, 861–869. [Google Scholar] [CrossRef]
- Shaplov, A.S.; Ponkratov, D.O.; Vygodskii, Y.S. Poly(ionic liquid)s: Synthesis, properties, and application. Polym. Sci. Ser. B 2016, 58, 73–142. [Google Scholar] [CrossRef]
- Rathnayake, R.M.L.L.; Perera, K.S.; Vidanapathirana, K.P. Past, present and future of ionic liquid based polymer electrolytes. AIMS Energy 2020, 8, 231–251. [Google Scholar] [CrossRef]
- Bara, J.E.; O’Harra, K.E. Recent Advances in the Design of Ionenes: Toward Convergence with High-Performance Polymers. Macromol. Chem. Phys. 2019, 220, 1900078–1900095. [Google Scholar] [CrossRef]
- Yuan, J.; Antonietti, M. Poly(Ionic Liquid)s as Ionic Liquid-Based Innovative Polyelectrolytes. Appl. Ion. Liq. Polym. Sci. Technol. 2015, 47–67. [Google Scholar] [CrossRef]
- Tundidor-Camba, A.; Saldias, C.; Tagle, L.H.; Terraza, C.A.; Coll, D.; Pérez, G.; Aguilar-Vega, M.; Abarca, R.L.; Ortiz, P.A. Synthesis, characterization and film preparation of new co-polyimide based on new 3,5-diamino-N-(pyridin-4-ylmethyl)benzamide, ODA and 6FDA. J. Chil. Chem. Soc. 2018, 63, 4239–4250. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, N.; Matsumoto, M.; Higashi, F. Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J. Polym. Sci. Polym. Chem. Ed. 1975, 13, 1373–1380. [Google Scholar] [CrossRef]
- Fuoss, R.M.; MacLay, W.N. Polyelectrolytes. VI. Viscosities of 4-polyvinylpyridine hydrochloride in methanol at 25°. J. Polym. Sci. 1951, 6, 305–317. [Google Scholar] [CrossRef]
- Briones, X.; Tapia, R.A.; Campodónico, P.R.; Urzúa, M.; Leiva, A.; Contreras, R.; González-Navarrete, J. Synthesis and characterization of poly (ionic liquid) derivatives of N-alkyl quaternized poly(4-vinylpyridine). React. Funct. Polym. 2018, 124, 64–71. [Google Scholar] [CrossRef]
- Hallett, J.; Welton, T. Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chem. Rev. 2011, 111, 3508–3576. [Google Scholar] [CrossRef]
Mn (g/mol) | Mw (g/mol) | Đ | |
---|---|---|---|
poly(ODA-co-PyMDA) | 56,290 | 96,060 | 1.71 |
Solvents | Polymers a | ||
---|---|---|---|
Poly(ODA-co-PyMDA) | Poly(ODA-co-PyMDA[Me])TFSI− | Poly(ODA-co-PyMDA[Et])TFSI− | |
H2O | - | - | - |
EtOH | - | - | - |
MeOH | - | - | - |
n-hexane | - | - | - |
Acetone | - | - | - |
CHCl3 | - | - | - |
THF | - | - | - |
AcOEt | - | - | - |
1,2-Dioxane | - | - | - |
DMF | + | + | + |
DMA | + | + | + |
NMP | + | - | - |
DMSO | + | + | + |
ηinh (dL/g) b | 0.80 | 1.19 | 2.38 |
Polymer | Ti (°C) a | T1 (°C) | T2 (°C) | T3 (°C) | R (%) b |
---|---|---|---|---|---|
poly(ODA-co-PyMDA) | 395 | 402 | 492 | 544 | 49 |
poly(ODA-co-PyMDA[Me])TFSI− | 373 | 370 | 483 | - | 49 |
poly(ODA-co-PyMDA[Et])TFSI− | 309 | 367 | 492 | - | 37 |
Polymer | Young’s Modulus | Yield Strength | Tensile Strength | Elongation at Break |
---|---|---|---|---|
[Gpa] | [Mpa] | [Mpa] | [%] | |
poly(ODA-co-PyMDA) | 2.7 ± 0.03 | 56.3 ± 1.5 | 76.7 ± 1.4 | 4.9 ± 0.5 |
poly(ODA-co-PyMDA[Me])TFSI− | 2.4 ± 0.02 | 48.4 ± 1.1 | 87.9 ± 1.2 | 7.5 ± 0.5 |
poly(ODA-co-PyMDA[Et])TFSI− | 2.5 ± 0.04 | 44.5 ± 0.8 | 83.5 ± 1.6 | 5.6 ± 0.3 |
Polymer | Water Contact Angle |
---|---|
poly(ODA-co-PyMDA) | 72.7 ± 2.1 |
poly(ODA-co-PyMDA[Me])TFSI− | 81.0 ± 2.1 |
poly(ODA-co-PyMDA[Et])TFSI− | 95.3 ± 2.4 |
Sample | Thickness [µm] | Time [s] | Flux [L/m2h] | Concentration [mg/L] | Rejection [%] |
---|---|---|---|---|---|
Blank 1000 a | 0 | 6.76 | 55,379.6 | 979 | 2.1 |
Blank 2000 a | 0 | 7.67 | 48,809.2 | 1988 | 0.6 |
A 1000 | 11.4 ± 1.0 | 10.83 | 34,567.5 | 909 | 9.1 |
A 2000 | 11.4 ± 1.0 | 8.98 | 41,688.9 | 1893 | 5.4 |
B 1000 | 12.6 ± 1.5 | 46.60 | 9220.8 | 861 | 13.9 |
B 2000 | 12.6 ± 1.5 | 108.00 | 3466.4 | 1875 | 6.2 |
C 1000 b | 17.1 ± 0.5 | 12.6 × 103 | 29.7 | 797 | 20.3 |
C 2000 b | 17.1 ± 0.5 | 14.4 × 103 | 26.0 | 1826 | 8.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonardd, S.; Ángel, A.; Norambuena, Á.; Coll, D.; Tundidor-Camba, A.; Ortiz, P.A. Novel Polyelectrolytes Obtained by Direct Alkylation and Ion Replacement of a New Aromatic Polyamide Copolymer Bearing Pyridinyl Pendant Groups. Polymers 2021, 13, 1993. https://doi.org/10.3390/polym13121993
Bonardd S, Ángel A, Norambuena Á, Coll D, Tundidor-Camba A, Ortiz PA. Novel Polyelectrolytes Obtained by Direct Alkylation and Ion Replacement of a New Aromatic Polyamide Copolymer Bearing Pyridinyl Pendant Groups. Polymers. 2021; 13(12):1993. https://doi.org/10.3390/polym13121993
Chicago/Turabian StyleBonardd, Sebastián, Alejandro Ángel, Ángel Norambuena, Deysma Coll, Alain Tundidor-Camba, and Pablo A. Ortiz. 2021. "Novel Polyelectrolytes Obtained by Direct Alkylation and Ion Replacement of a New Aromatic Polyamide Copolymer Bearing Pyridinyl Pendant Groups" Polymers 13, no. 12: 1993. https://doi.org/10.3390/polym13121993
APA StyleBonardd, S., Ángel, A., Norambuena, Á., Coll, D., Tundidor-Camba, A., & Ortiz, P. A. (2021). Novel Polyelectrolytes Obtained by Direct Alkylation and Ion Replacement of a New Aromatic Polyamide Copolymer Bearing Pyridinyl Pendant Groups. Polymers, 13(12), 1993. https://doi.org/10.3390/polym13121993