Effect of Composite Core Materials on Fracture Resistance of Endodontically Treated Teeth: A Systematic Review and Meta-Analysis of In Vitro Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Study Selection
2.3. Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zarow, M.; Ramírez-Sebastià, A.; Paolone, G.; de Ribot Porta, J.; Mora, J.; Espona, J.; Durán-Sindreu, F.; Roig, M. A new classification system for the restoration of root filled teeth. Int. Endod. J. 2018, 51, 318–334. [Google Scholar] [CrossRef] [Green Version]
- Słowik, J.; Jurczak, A.; Zarow, M. The Application of Quality Guidelines of the European Society of Endodontology in Dental Practice in Poland. Ann. Acad. Med. Stetin. 2011, 57, 110–114. [Google Scholar]
- Kharouf, N.; Arntz, Y.; Eid, A.; Zghal, J.; Sauro, S.; Haikel, Y.; Mancino, D. Physicochemical and Antibacterial Properties of Novel, Premixed Calcium Silicate-Based Sealer Compared to Powder–Liquid Bioceramic Sealer. J. Clin. Med. 2020, 9, 3096. [Google Scholar] [CrossRef] [PubMed]
- Makade, C.S.; Meshram, G.K.; Warhadpande, M.; Patil, P.G. A Comparative Evaluation of Fracture Resistance of Endodontically Treated Teeth Restored with Different Post Core Systems—An in-Vitro Study. J. Adv. Prosthodont. 2011, 3, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Cheung, W. A Review of the Management of Endodontically Treated Teeth: Post, Core and the Final Restoration. J. Am. Dent. Assoc. 2005, 136, 611–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarow, M.; Devoto, W.; Saracinelli, M. Reconstruction of Endodontically Treated Posterior Teeth--with or without Post? Guidelines for the Dental Practitioner. Eur. J. Esthet. Dent. 2009, 4, 312–327. [Google Scholar] [PubMed]
- Van der Meer, W.J.; Vissink, A.; Ng, Y.L.; Gulabivala, K. 3D Computer Aided Treatment Planning in Endodontics. J. Dent. 2016, 45, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Naumann, M.; Schmitter, M.; Frankenberger, R.; Krastl, G. “Ferrule Comes First. Post Is Second!” Fake News and Alternative Facts? A Systematic Review. J. Endod. 2018, 44, 212–219. [Google Scholar] [CrossRef]
- Al-Ansari, A. Which Type of Post and Core System Should You Use? Evid.-Based Dent. 2007, 8, 42. [Google Scholar] [CrossRef]
- Guldener, K.A.; Lanzrein, C.L.; Guldener, B.E.S.; Lang, N.P.; Ramseier, C.A.; Salvi, G.E. Long-Term Clinical Outcomes of Endodontically Treated Teeth Restored with or without Fiber Post–Retained Single-Unit Restorations. J. Endod. 2017, 43, 188–193. [Google Scholar] [CrossRef]
- Zarow, M.; Paisley, C.S.; Krupinski, J.; Brunton, P.A. Fiber-Reinforced Composite Fixed Dental Prostheses: Two Clinical Reports. Quintessence Int. 2010, 41, 471–477. [Google Scholar]
- Signore, A.; Benedicenti, S.; Kaitsas, V.; Barone, M.; Angiero, F.; Ravera, G. Long-Term Survival of Endodontically Treated, Maxillary Anterior Teeth Restored with Either Tapered or Parallel-Sided Glass-Fiber Posts and Full-Ceramic Crown Coverage. J. Dent. 2009, 37, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Mamoun, J. Post and Core Build-Ups in Crown and Bridge Abutments: Bio-Mechanical Advantages and Disadvantages. J. Adv. Prosthodont. 2017, 9, 232–237. [Google Scholar] [CrossRef] [Green Version]
- Gowda, S.; Quadras, D.D.; Sesappa, S.R.; Maiya, G.R.R.; Kumar, L.; Kulkarni, D.; Mishra, N. Comparative Evaluation of Fracture Strength of Different Types of Composite Core Build-up Materials: An in Vitro Study. J. Contemp. Dent. Pract. 2018, 19, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Warangkulkasemkit, S.; Pumpaluk, P. Comparison of Physical Properties of Three Commercial Composite Core Build up Materials. Dent. Mater. J. 2019, 38, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Ferracane, J.L. Resin Composite—State of the Art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; E Brennan, S.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Bourgi, R.; Hardan, L.; Rivera-Gonzaga, A.; Cuevas-Suárez, C.E. Effect of Warm-Air Stream for Solvent Evaporation on Bond Strength of Adhesive Systems: A Systematic Review and Meta-Analysis of in Vitro Studies. Int. J. Adhes. Adhes. 2021, 105, 102794. [Google Scholar] [CrossRef]
- Panitiwat, P.; Salimee, P. Effect of Different Composite Core Materials on Fracture Resistance of Endodontically Treated Teeth Restored with FRC Posts. J. Appl. Oral Sci. 2017, 25, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Özyürek, T.; Topkara, C.; Koçak, İ.; Yılmaz, K.; Gündoğar, M.; Uslu, G. Fracture Strength of Endodontically Treated Teeth Restored with Different Fiber Post and Core Systems. Odontology 2020, 108, 588–595. [Google Scholar] [CrossRef]
- Fráter, M.; Sáry, T.; Braunitzer, G.; Szabó, P.B.; Lassila, L.; Vallittu, P.K.; Garoushi, S. Fatigue Failure of Anterior Teeth without Ferrule Restored with Individualized Fiber-Reinforced Post-Core Foundations. J. Mech. Behav. Biomed. Mater. 2021, 118, 104440. [Google Scholar] [CrossRef] [PubMed]
- Fráter, M.; Sáry, T.; Néma, V.; Braunitzer, G.; Vallittu, P.; Lassila, L.; Garoushi, S. Fatigue Failure Load of Immature Anterior Teeth: Influence of Different Fiber Post-Core Systems. Odontology 2021, 109, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.M.; Bakar, W.Z.W.; Husein, A.; Alam, M.K. An In Vitro study of Fracture Resistance of Weakened Tooth Roots Reinforced with Two Types of Adhesive Restorative Materials. Bangladesh J. Med. Sci. 2013, 12, 63–68. [Google Scholar] [CrossRef]
- Ahn, S.-G.; Sorensen, J.A. Comparison of Mechanical Properties of Various Post and Core Materials. J. Korean Acad. Prosthodont. 2003, 41, 288–299. [Google Scholar]
- Naumann, M.; Sterzenbach, G.; Rosentritt, M.; Beuer, F.; Meyer-Lückel, H.; Frankenberger, R. Self-Adhesive Cements as Core Build-Ups for One-Stage Post-Endodontic Restorations? Int. End. J. 2011, 44. [Google Scholar] [CrossRef]
- Zarow, M.; Vadini, M.; Chojnacka-Brozek, A.; Szczeklik, K.; Milewski, G.; Biferi, V.; D’Arcangelo, C.; de Angelis, F. Effect of Fiber Posts on Stress Distribution of Endodontically Treated Upper Premolars: Finite Element Analysis. Nanomaterials 2020, 10, 1708. [Google Scholar] [CrossRef]
- Watts, D.C. Elastic Moduli and Visco-Elastic Relaxation. J. Dent. 1994, 22. [Google Scholar] [CrossRef]
- O’Keefe, K.L.; Powers, J.M. Adhesion of Resin Composite Core Materials to Dentin. Int. J. Prosthodont. 2001, 14, 451–460. [Google Scholar]
- Monticelli, F.; Goracci, C.; Grandini, S.; García-Godoy, F.; Ferrari, M. Scanning Electron Microscopic Evaluation of Fiber Post-Resin Core Units Built up with Different Resin Composites. Am. J. Dent. 2005, 18, 61–65. [Google Scholar]
- Scribante, A.; Massironi, S.; Pieraccini, G.; Vallittu, P.; Lassila, L.; Sfondrini, M.F.; Gandini, P. Effects of nanofillers on mechanical properties of fiber-reinforced composites polymerized with light-curing and additional postcuring. J. Appl. Biomater. Funct. Mater. 2015, 13, e296–e299. [Google Scholar] [CrossRef]
- Uctasli, S.; Boz, Y.; Sungur, S.; Vallittu, P.K.; Garoushi, S.; Lassila, L. Influence of Post-Core and Crown Type on the Fracture Resistance of Incisors Submitted to Quasistatic Loading. Polymers 2021, 13, 1130. [Google Scholar] [CrossRef] [PubMed]
- Rüttermann, S.; Alberts, I.; Raab, W.H.; Janda, R.R. Physical properties of self-, dual-, and light-cured direct core materials. Clin. Oral Investig. 2011, 15, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Rasimick, B.J.; Wan, J.; Musikant, B.L.; Deutsch, A.S. A Review of Failure Modes in Teeth Restored with Adhesively Luted Endodontic Dowels. J. Prosthodont. 2010, 19, 639–646. [Google Scholar] [CrossRef] [PubMed]
Search Strategy | |
---|---|
#1 | Pulpless tooth OR pulpless teeth OR root filled tooth OR root filled teeth OR endodontically treated tooth OR endodontically treated teeth OR devital tooth OR devital teeth OR tooth nonvital OR root canal treatment OR root filling OR endodontical treated teeth OR endodontics OR root canal therapy OR tooth root OR nonvital OR traditional endodontic cavity OR tooth root* OR nonvital* OR endodontic treatment |
#2 | Fracture strength OR Fracture resistance OR tooth fractures OR tooth fractures* |
#3 | Core composite OR fiber post OR restoration OR coronal restoration OR composite core material OR FRC post OR anatomical post OR customized post OR composite resins OR dental restoration OR fiberglass OR post and core technique OR post and core technique* OR fiberglass OR Composite restoration OR dental composite OR dental composite restoration OR Composite resins OR composite resin OR Composite Resins* OR resin OR Composite OR resin based composite OR composite dental resin |
#4 | #1 and #2 and #3 |
Study | Composite Resins Used | Core-Build up Composites | Outcomes | Main Result |
---|---|---|---|---|
Özyürek, 2020 [20] | Filtek Bulk Fill Posterior (3M ESPE, St. Paul, USA) | Clearfil DC Core Plus (Kuraray Medical Inc., Tokyo, Japan) | Fracture strength | The highest resistance to fracture was observed in the samples restored using the RelyX Fiber Post and Filtek Bulk Fill Posterior. Except for the samples restored using FiberSite posts, the fracture strength decreased after the crown replacement. (p < 0.05) |
Fráter, 2020 [22] | everX Posterior (GC Europe, Leuven, Belgium) everX Flow (GC Europe, Leuven, Belgium) | Gradia Core (GC Europe, Leuven, Belgium) | Mechanical testing Gap visualization test Microhardness test | The restoration of immature interior teeth with the use of flowable SFRC, as post-core material displayed a promising performance in terms of fatigue resistance and survival. |
Ahmad, 2013 [23] | Composite resin Z100 (3M ESPE, USA) | Alpha-dent (Dental Technologies, USA) | Fracture resistance | There was no significant difference (p = 0.233) in fracture resistance between the teeth reinforced with light-polymerizing and auto-polymerizing composite resin. The use of less technique-sensitive auto-polymerizing composite resin had an equivalent beneficial effect on reinforcing weakened roots to the more common light-polymerized composite resin. |
Fráter, 2021 [21] | everX Posterior (GC Europe, Leuven, Belgium) everX Flow (GC Europe, Leuven, Belgium) | Gradia Core Self-Etching Bond (GC Europe, Leuven, Belgium) | Fracture resistance | Regarding fracture pattern, nearly all specimens fractured in a restorable manner Although different FRC post/core systems are available for the restoration of damaged root canal treated anterior teeth, multiple unidirectional FRC posts tend to be a good option when the ferrule is missing |
Panitiwat, 2016 [19] | Tetric N-Ceram (Ivoclar Vivadent, Schaan, Liechtenstein) | Clearfil Photo Core (Kuraray medical, Okayama, Japan) MultiCore Flow (Ivoclar Vivadent, Schaan, Liechtenstein) LuxaCore Z-Dual Automix (DMG, Hamburg, Germany) | Fracture resistance | The fracture resistance was higher in the groups with Clearfil Photo Core and MultiCore Flow, which presented a ranking of the highest values of the materials, showing the same tendency as fracture loads. Among the cores used in this study, the composite core with high filler content tended to enhance the fracture thresholds of teeth restored with fiber posts more than in others. |
Study | Specimen Randomization | Single Operator | Operator Blinded | Control Group | Standardized Specimens | Failure Mode | Manufacturer’s Instructions | Sample Size Calculation | Risk of Bias |
---|---|---|---|---|---|---|---|---|---|
Özyürek, 2020 [20] | YES | NO | NO | YES | YES | YES | YES | YES | Medium |
Fráter, 2020 [22] | YES | NO | NO | YES | YES | YES | YES | NO | Medium |
Ahmad, 2013 [23] | YES | NO | NO | YES | YES | NO | YES | NO | Medium |
Fráter, 2021 [21] | YES | NO | NO | YES | YES | YES | YES | NO | Medium |
Panitiwat,2016 [19] | YES | NO | NO | YES | YES | YES | YES | NO | Medium |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarow, M.; Dominiak, M.; Szczeklik, K.; Hardan, L.; Bourgi, R.; Cuevas-Suárez, C.E.; Zamarripa-Calderón, J.E.; Kharouf, N.; Filtchev, D. Effect of Composite Core Materials on Fracture Resistance of Endodontically Treated Teeth: A Systematic Review and Meta-Analysis of In Vitro Studies. Polymers 2021, 13, 2251. https://doi.org/10.3390/polym13142251
Zarow M, Dominiak M, Szczeklik K, Hardan L, Bourgi R, Cuevas-Suárez CE, Zamarripa-Calderón JE, Kharouf N, Filtchev D. Effect of Composite Core Materials on Fracture Resistance of Endodontically Treated Teeth: A Systematic Review and Meta-Analysis of In Vitro Studies. Polymers. 2021; 13(14):2251. https://doi.org/10.3390/polym13142251
Chicago/Turabian StyleZarow, Maciej, Marzena Dominiak, Katarzyna Szczeklik, Louis Hardan, Rim Bourgi, Carlos Enrique Cuevas-Suárez, Juan Eliezer Zamarripa-Calderón, Naji Kharouf, and Dimitar Filtchev. 2021. "Effect of Composite Core Materials on Fracture Resistance of Endodontically Treated Teeth: A Systematic Review and Meta-Analysis of In Vitro Studies" Polymers 13, no. 14: 2251. https://doi.org/10.3390/polym13142251