Pectin/Activated Carbon-Based Porous Microsphere for Pb2+ Adsorption: Characterization and Adsorption Behaviour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Pectin/Active Carbon Microspheres
2.3. FTIR Spectra Analysis
2.4. SEM Analysis
2.5. Specific Surface Area and Pore Size Analysis
2.6. Texture Profile Analysis
2.7. Batch Adsorption Experiments
2.8. Adsorption–Desorption Cycles
2.9. SEM-EDX Analysis
2.10. X-ray Photoelectron Spectroscopy Analysis
3. Results and Discussion
3.1. Characterization of P/ACs
3.2. Effect of Initial pH on the Pb2+ Adsorption
3.3. The Kinetic Studies
3.4. The Adsorption Isotherms Study
3.5. Desorption and Regeneration
3.6. Adsorption Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdollahi, N.; Razavi, S.A.A.; Morsali, A.; Hu, M.-L. High capacity Hg(II) and Pb(II) removal using MOF-based nanocomposite: Cooperative effects of pore functionalization and surface-charge modulation. J. Hazard. Mater. 2020, 387, 121667. [Google Scholar] [CrossRef]
- Binet, M.T.; Adams, M.S.; Gissi, F.; Golding, L.A.; Schlekat, C.E.; Garman, E.R.; Merrington, G.; Stauber, J.L. Toxicity of nickel to tropical freshwater and sediment biota: A critical literature review and gap analysis. Environ. Toxicol. Chem. 2018, 37, 293–317. [Google Scholar] [CrossRef]
- Joseph, L.; Jun, B.-M.; Flora, J.R.V.; Park, C.M.; Yoon, Y. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere 2019, 229, 142–159. [Google Scholar] [CrossRef]
- Hasanpour, M.; Hatami, M. Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: A review study. Adv. Colloid Interface Sci. 2020, 284, 102247. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Y.; Shen, J.; Zhang, S.; Liu, X.; Chen, X.; Ma, Y.; Ren, S.; Fang, G.; Li, S.; et al. Simultaneous removal of Pb2+, Cu2+ and Cd2+ ions from wastewater using hierarchical porous polyacrylic acid grafted with lignin. J. Hazard. Mater. 2020, 392, 122208. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Mohamed, A.K. Novel derived pectin hydrogel from mandarin peel based metal-organic frameworks composite for enhanced Cr(VI) and Pb(II) ions removal. Int. J. Biol. Macromol. 2020, 164, 920–931. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Hou, Y. Preparation of magnetic polyethylenimine lignin and its adsorption of Pb(II). Int. J. Biol. Macromol. 2019, 141, 1102–1110. [Google Scholar] [CrossRef]
- Najaflou, S.; Rad, M.F.; Baghdadi, M.; Nabi Bidhendi, G.R. Removal of Pb(II) from contaminated waters using cellulose sulfate/chitosan aerogel: Equilibrium, kinetics, and thermodynamic studies. J. Environ. Manag. 2021, 286, 112167. [Google Scholar] [CrossRef]
- Thakur, S.; Chaudhary, J.; Kumar, V.; Thakur, V.K. Progress in pectin based hydrogels for water purification: Trends and challenges. J. Environ. Manag. 2019, 238, 210–223. [Google Scholar] [CrossRef] [Green Version]
- Sheth, Y.; Dharaskar, S.; Khalid, M.; Sonawane, S. An environment friendly approach for heavy metal removal from industrial wastewater using chitosan based biosorbent: A review. Sustain. Energy Technol. Assess. 2021, 43, 100951. [Google Scholar] [CrossRef]
- Qin, H.; Hu, T.; Zhai, Y.; Lu, N.; Aliyeva, J.J.E.P. The improved methods of heavy metals removal by biosorbents: A review. Environ. Pollut. 2020, 258, 113777. [Google Scholar] [CrossRef]
- Kharrazi, S.M.; Soleimani, M.; Jokar, M.; Richards, T.; Pettersson, A.; Mirghaffari, N. Pretreatment of lignocellulosic waste as a precursor for synthesis of high porous activated carbon and its application for Pb (II) and Cr (VI) adsorption from aqueous solutions. Int. J. Biol. Macromol. 2021, 180, 299–310. [Google Scholar] [CrossRef]
- Sajjadi, S.-A.; Meknati, A.; Lima, E.C.; Dotto, G.L.; Mendoza-Castillo, D.I.; Anastopoulos, I.; Alakhras, F.; Unuabonah, E.I.; Singh, P.; Hosseini-Bandegharaei, A. A novel route for preparation of chemically activated carbon from pistachio wood for highly efficient Pb(II) sorption. J. Environ. Manag. 2019, 236, 34–44. [Google Scholar] [CrossRef]
- Hassan, A.F.; Abdel-Mohsen, A.M.; Elhadidy, H. Adsorption of arsenic by activated carbon, calcium alginate and their composite beads. Int. J. Biol. Macromol. 2014, 68, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Kan, X.; Ding, J.; Yu, C.; Deng, C.; Zhu, H.; Hou, H. Molten salt synthesis of porous chromium carbide/carbon biomorphic ceramics for Pb2+ removal from water. Micropor. Mesopor. Mat. 2021, 318, 111030. [Google Scholar] [CrossRef]
- Cataldo, S.; Lo Meo, P.; Conte, P.; Di Vincenzo, A.; Milea, D.; Pettignano, A. Evaluation of adsorption ability of cyclodextrin-calixarene nanosponges towards Pb2+ ion in aqueous solution. Carbohyd. Polym. 2021, 267, 118151. [Google Scholar] [CrossRef] [PubMed]
- Fouda-Mbanga, B.G.; Prabakaran, E.; Pillay, K. Synthesis and characterization of CDs/Al2O3 nanofibers nanocomposite for Pb2+ ions adsorption and reuse for latent fingerprint detection. Arab. J. Chem. 2020, 13, 6762–6781. [Google Scholar] [CrossRef]
- Ibarra-Rodriguez, D.; Lizardi-Mendoza, J.; Lopez-Maldonado, E.A.; Oropeza-Guzman, M.T. Capacity of ‘3nopal’ pectin as a dual coagulant-flocculant agent for heavy metals removal. Chem. Eng. J. 2017, 323, 19–28. [Google Scholar] [CrossRef]
- Wang, X.-d.; Li, Y.; Dai, T.-t.; He, X.-m.; Chen, M.-s.; Liu, C.-m.; Liang, R.-h.; Chen, J. Preparation of pectin/poly(m-phenylenediamine) microsphere and its application for Pb2+ removal. Carbohyd. Polym. 2021, 260, 117811. [Google Scholar] [CrossRef]
- Manawi, Y.; McKay, G.; Ismail, N.; Fard, A.K.; Kochkodan, V.; Atieh, M.A. Enhancing lead removal from water by complex-assisted filtration with acacia gum. Chem. Eng. J. 2018, 352, 828–836. [Google Scholar] [CrossRef]
- Ribeiro, S.C.; de Lima, H.H.C.; Kupfer, V.L.; da Silva, C.T.P.; Veregue, F.R.; Radovanovic, E.; Guilherme, M.R.; Rinaldi, A.W. Synthesis of a superabsorbent hybrid hydrogel with excellent mechanical properties: Water transport and methylene blue absorption profiles. J. Mol. Liq. 2019, 294, 111553. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Amira, M.F.; Seleim, S.M.; Mohamed, A.K. Amino-decorated magnetic metal-organic framework as a potential novel platform for selective removal of chromium (VI), cadmium (II) and lead (II). J. Hazard. Mater. 2020, 381, 120979. [Google Scholar] [CrossRef]
- Gong, J.-L.; Wang, X.-Y.; Zeng, G.-M.; Chen, L.; Deng, J.-H.; Zhang, X.-R.; Niu, Q.-Y. Copper (II) removal by pectin-iron oxide magnetic nanocomposite adsorbent. Chem. Eng. J. 2012, 185, 100–107. [Google Scholar] [CrossRef]
- Liang, R.-h.; Li, Y.; Huang, L.; Wang, X.-d.; Hu, X.-x.; Liu, C.-m.; Chen, M.-s.; Chen, J. Pb2+ adsorption by ethylenediamine-modified pectins and their adsorption mechanisms. Carbohyd. Polym. 2020, 234, 115911. [Google Scholar] [CrossRef]
- Jung, K.-W.; Lee, S.Y.; Choi, J.-W.; Lee, Y.J. A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: Adsorption behavior and mechanisms for the removal of copper(II) from aqueous media. Chem. Eng. J. 2019, 369, 529–541. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, T.; Zhang, H.; Liu, Y.; Xing, B. Adsorption of Pb(II) and Cd(II) by magnetic activated carbon and its mechanism. Sci. Total Environ. 2021, 757, 143910. [Google Scholar] [CrossRef]
- Jakóbik-Kolon, A.; Bok-Badura, J.; Karoń, K.; Mitko, K.; Milewski, A. Hybrid pectin-based biosorbents for zinc ions removal. Carbohyd. Polym. 2017, 169, 213–219. [Google Scholar] [CrossRef]
- Ling, L.-L.; Liu, W.-J.; Zhang, S.; Jiang, H. Magnesium oxide embedded nitrogen self-doped biochar composites: Fast and high-efficiency adsorption of heavy metals in an aqueous solution. Environ. Sci. Technol. 2017, 51, 10081–10089. [Google Scholar] [CrossRef]
- Liang, H.; Song, B.; Peng, P.; Jiao, G.; Yan, X.; She, D. Preparation of three-dimensional honeycomb carbon materials and their adsorption of Cr(VI). Chem. Eng. J. 2020, 387, 124016. [Google Scholar] [CrossRef]
- Wang, R.; Liang, R.; Dai, T.; Chen, J.; Shuai, X.; Liu, C. Pectin-based adsorbents for heavy metal ions: A review. Trends Food Sci. Technol. 2019, 91, 319–329. [Google Scholar] [CrossRef]
- Chwastowski, J.; Brado, D.; Ukowski, W.J.M. Adsorption of cadmium, manganese and lead ions from aqueous solutions using spent coffee grounds and biochar produced by its pyrolysis in the fluidized bed reactor. Materials 2020, 13, 2782. [Google Scholar] [CrossRef]
- Lv, D.; Liu, Y.; Zhou, J.; Yang, K.; Lou, Z.; Baig, S.A.; Xu, X. Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb(II) and Cu(II) removal from aqueous solutions. Appl. Surf. Sci. 2018, 428, 648–658. [Google Scholar] [CrossRef]
- Zare, E.N.; Lakouraj, M.M.; Kasirian, N. Development of effective nano-biosorbent based on poly m-phenylenediamine grafted dextrin for removal of Pb (II) and methylene blue from water. Carbohyd. Polym. 2018, 201, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Mirza, A. Synthesis of Guar gum/bentonite a novel bionanocomposite: Isotherms, kinetics and thermodynamic studies for the removal of Pb (II) and crystal violet dye. J. Mol. Liq. 2018, 249, 805–814. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, C.; Shen, Z.; Lu, Q.; He, C.; Zhang, T.C.; Liu, J. Polyethyleneimine and carbon disulfide co-modified alkaline lignin for removal of Pb2 + ions from water. Chem. Eng. J. 2019, 359, 265–274. [Google Scholar] [CrossRef]
- Shao, Z.; Lu, J.; Ding, J.; Fan, F.; Sun, X.; Li, P.; Fang, Y.; Hu, Q. Novel green chitosan-pectin gel beads for the removal of Cu(II), Cd(II), Hg(II) and Pb(II) from aqueous solution. Int. J. Biol. Macromol. 2021, 176, 217–225. [Google Scholar] [CrossRef]
- Zhou, G.; Luo, J.; Liu, C.; Chu, L.; Crittenden, J. Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents. Water Res. 2018, 131, 246–254. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, W.; Yang, Y.; Huang, X.; Wang, S.; Qiu, R. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res. 2012, 46, 854–862. [Google Scholar] [CrossRef]
Model | Linear Equation | Parameters | Reference |
---|---|---|---|
Pseudo-first-order | (mg/g): amounts of Pb2+ adsorbed at time t | [20,21] | |
(mg/g): amounts of Pb2+ adsorbed at time t at adsorption equilibrium | |||
(min−1): rate constants of the pseudo-first-order | |||
Pseudo-second-order | (min−1): rate constants of the pseudo-second-order | ||
Intra-particle diffusion | (mg·g−1·min−1/2): rate constant of intra-particle diffusion | ||
intercept | |||
Langmuir | (mg/g): Pb2+ adsorption at the equilibrium | [22] | |
(mg/L): equilibrium concentration of the Pb2+ | |||
(L/mg): Langmuir constant | |||
(mg/g): theoretical maximum adsorption capacity of adsorbent | |||
Freundlich | lnqe= lnKF + 1/lnCe | : Freundlich constant | |
: intensity of the adsorbents |
Adsorbent | qe, exp (mg·g−1) | Pseudo-First-Order Model | Pseudo-Second-Order Model | Intra-Particle Diffusion Model | ||||||
---|---|---|---|---|---|---|---|---|---|---|
qe, cal (mg·g−1) | K1 (min−1) | R2 | qe, cal (mg·g−1) | K2 (g·mg−1·min−1) | R2 | Kp1 | Kp2 | Kp3 | ||
(mg·g−1·min−1/2) | ||||||||||
Pectin microsphere | 44.55 | 31.99 | 0.003 | 0.969 | 48.15 | 0.0089 | 0.997 | 1.619 | 1.454 | 0.312 |
P/AC4:1 | 47.49 | 24.42 | 0.003 | 0.879 | 50.66 | 0.0126 | 0.996 | 1.746 | 1.101 | 0.078 |
P/AC2:1 | 48.54 | 22.74 | 0.003 | 0.873 | 51.39 | 0.0145 | 0.997 | 2.267 | 0.955 | 0.103 |
P/AC1:1 | 48.94 | 22.60 | 0.004 | 0.947 | 50.86 | 0.0209 | 0.999 | 3.034 | 0.638 | 0.101 |
P/AC2:3 | 48.98 | 23.75 | 0.005 | 0.968 | 50.97 | 0.0219 | 0.999 | 3.212 | 0.779 | 0.043 |
Adsorbents | Qm | Langmuir | Freundlich | ||
---|---|---|---|---|---|
(mg/g) | KL (L/mg) | R2 | 1/nF | R2 | |
Pectin microsphere | 120.19 | 0.009 | 0.994 | 0.569 | 0.959 |
P/AC4:1 | 154.32 | 0.008 | 0.995 | 0.622 | 0.957 |
P/AC2:1 | 204.08 | 0.006 | 0.995 | 0.689 | 0.970 |
P/AC1: 1 | 240.38 | 0.005 | 0.997 | 0.722 | 0.978 |
P/AC2:3 | 279.33 | 0.004 | 0.996 | 0.751 | 0.983 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.-s.; Li, Y.; Shuai, X.-x.; Liang, R.-h.; Chen, J.; Liu, C.-m. Pectin/Activated Carbon-Based Porous Microsphere for Pb2+ Adsorption: Characterization and Adsorption Behaviour. Polymers 2021, 13, 2453. https://doi.org/10.3390/polym13152453
Wang R-s, Li Y, Shuai X-x, Liang R-h, Chen J, Liu C-m. Pectin/Activated Carbon-Based Porous Microsphere for Pb2+ Adsorption: Characterization and Adsorption Behaviour. Polymers. 2021; 13(15):2453. https://doi.org/10.3390/polym13152453
Chicago/Turabian StyleWang, Ri-si, Ya Li, Xi-xiang Shuai, Rui-hong Liang, Jun Chen, and Cheng-mei Liu. 2021. "Pectin/Activated Carbon-Based Porous Microsphere for Pb2+ Adsorption: Characterization and Adsorption Behaviour" Polymers 13, no. 15: 2453. https://doi.org/10.3390/polym13152453
APA StyleWang, R.-s., Li, Y., Shuai, X.-x., Liang, R.-h., Chen, J., & Liu, C.-m. (2021). Pectin/Activated Carbon-Based Porous Microsphere for Pb2+ Adsorption: Characterization and Adsorption Behaviour. Polymers, 13(15), 2453. https://doi.org/10.3390/polym13152453