Facile Control of Structured ZnO Polymeric Nanoparticles through Miniemulsion Polymerization: Kinetic and UV Shielding Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of OA-ZnO NPs
2.3. Synthesis and Characterization of ZPPs
2.4. UV Shielding Performance of PVA and Composite Films
3. Results
3.1. Analysis of OA-ZnO NPs
3.2. Analysis of ZPPs
3.2.1. Effect of Surfactant Concentration
3.2.2. Effect of Initiator Content
3.2.3. Effect of Crosslinking Agent
3.2.4. Effect of Monomer Hydrophilicity
3.3. Effect of ZPP Morphology on UV Shielding Protection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Augustine, M.S.; Jeeju, P.; Sreevalsa, V.; Jayalekshmi, S. Excellent UV absorption in spin-coated thin films of oleic acid modified zinc oxide nanorods embedded in Polyvinyl alcohol. J. Phys. Chem. Solids 2012, 73, 396–401. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Fu, S.-Y.; Mai, Y.-W. Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency. Polymer 2006, 47, 2127–2132. [Google Scholar] [CrossRef]
- Shanshool, H.M.; Yahaya, M.; Mahmood, W.H.W.; Abdullah, I.Y. Polymer-ZnO nanocomposites foils and thin films for UV protection. AIP Conf. Proc. 2014, 1614, 136–141. [Google Scholar]
- Razavi-Khosroshahi, H.; Shao, W.; Fuji, M. Synthesis of TiO2 hollow nanoparticles with different shell thickness and effect of structure on photocatalytic activity. Solid State Sci. 2020, 103, 106179. [Google Scholar] [CrossRef]
- Wang, Y.; Su, J.; Li, T.; Ma, P.; Bai, H.; Xie, Y.; Chen, M.; Dong, W. A Novel UV-Shielding and Transparent Polymer Film: When Bioinspired Dopamine–Melanin Hollow Nanoparticles Join Polymers. ACS Appl. Mater. Interfaces 2017, 9, 36281–36289. [Google Scholar] [CrossRef] [PubMed]
- Grasset, F.; Saito, N.; Li, D.; Park, D.; Sakaguchi, I.; Ohashi, N.; Haneda, H.; Roisnel, T.; Mornet, S.; Duguet, E. Surface modification of zinc oxide nanoparticles by Aminopropyltriethoxysilane. J. Alloys Compd. 2003, 360, 298–311. [Google Scholar] [CrossRef]
- Tang, E.; Cheng, G.; Ma, X.; Pang, X.; Zhao, Q. Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system. Appl. Surf. Sci. 2006, 252, 5227–5232. [Google Scholar] [CrossRef]
- Petchthanasombat, C.; Tiensing, T.; Sunintaboon, P. Synthesis of zinc oxide-encapsulated poly(methyl methacrylate)–chitosan core–shell hybrid particles and their electrochemical property. J. Colloid Interface Sci. 2012, 369, 52–57. [Google Scholar] [CrossRef]
- Tang, E.; Dong, S. Preparation of styrene polymer/ZnO nanocomposite latex via miniemulsion polymerization and its anti-bacterial property. Colloid Polym. Sci. 2009, 287, 1025–1032. [Google Scholar] [CrossRef]
- Han, X.; Huang, S.; Wang, Y.; Shi, D. Design and development of anisotropic inorganic/polystyrene nanocomposites by sur-face modification of zinc oxide nanoparticles. Mater. Sci. Eng. C 2016, 64, 87–92. [Google Scholar] [CrossRef]
- Chen, J.H.; Cheng, C.-Y.; Chiu, W.-Y.; Lee, C.-F.; Liang, N.-Y. Synthesis of ZnO/polystyrene composites particles by Pickering emulsion polymerization. Eur. Polym. J. 2008, 44, 3271–3279. [Google Scholar] [CrossRef]
- Shown, I.; Ganguly, A.; Chen, L.-C.; Chen, K. Conducting polymer-based flexible supercapacitor. Energy Sci. Eng. 2014, 3, 2–26. [Google Scholar] [CrossRef]
- Zhang, J.J.; Gao, G.; Zhang, M.; Zhang, D.; Wang, D.L.; Zhao, D.C.; Liu, F.Q. ZnO/PS core–shell hybrid microspheres pre-pared with miniemulsion polymerization. J. Colloid Interface Sci. 2006, 301, 78–84. [Google Scholar] [CrossRef]
- Frizzo, M.S.; Feuser, P.E.; Berres, P.H.; Ricci-Júnior, E.; Campos, C.E.M.; Costa, C.; Araújo, P.H.H.; Sayer, C. Simultaneous encapsulation of zinc oxide and octocrylene in poly(methyl methacrylate-co-styrene) nanoparticles obtained by miniemulsion polymerization for use in sunscreen formulations. Colloids Surf. A Physicochem. Eng. Asp. 2019, 561, 39–46. [Google Scholar] [CrossRef]
- Wang, J.P.; Zhao, X.P.; Wang, D.W. Preparation of nanocapsules containing the two-phase core materials. J. Microencapsul. 2007, 24, 757–766. [Google Scholar] [CrossRef]
- Aguirre, M.; Barrado, M.; Iturrondobeitia, M.; Okariz, A.; Guraya, T.; Paulis, M.; Leiza, J.R. Film forming hybrid acrylic/ZnO latexes with excellent UV absorption capacity. Chem. Eng. J. 2015, 270, 300–308. [Google Scholar] [CrossRef]
- Charoenmark, L.; Polpanich, D.; Thiramanas, R.; Tangboriboonrat, P. Preparation of superparamagnetic polystyrene-based nanoparticles functionalized by acrylic acid. Macromol. Res. 2012, 20, 590–596. [Google Scholar] [CrossRef]
- Wichaita, W.; Polpanich, D.; Kaewsaneha, C.; Jangpatarapongsa, K.; Tangboriboonrat, P. Fabrication of functional hollow magnetic polymeric nanoparticles with controllable magnetic location. Colloids Surf. B Biointerfaces 2019, 184, 110557. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Tan, L.; Cui, Z.; Yang, X.; Yeung, K.; Pan, H.; Wu, S. Construction of N-halamine labeled silica/zinc oxide hybrid nanoparticles for enhancing antibacterial ability of Ti implants. Mater. Sci. Eng. C 2017, 76, 50–58. [Google Scholar] [CrossRef]
- Liu, P. Facile preparation of monodispersed core/shell zinc oxide@polystyrene (ZnO@PS) nanoparticles via soapless seeded microemulsion polymerization. Colloids Surf. A Physicochem. Eng. Asp. 2006, 291, 155–161. [Google Scholar] [CrossRef]
- El Saeed, A.M.; El-Fattah, M.A.; Azzam, A.M. Synthesis of ZnO nanoparticles and studying its influence on the antimicrobial, anticorrosion and mechanical behavior of polyurethane composite for surface coating. Dyes Pigments 2015, 121, 282–289. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Y.; Yang, G.; Zhang, S.; Yu, L.; Zhang, P. Tribological properties of oleic acid-modified zinc oxide nanoparticles as the lubricant additive in poly-alpha olefin and diisooctyl sebacate base oils. RSC Adv. 2016, 6, 69836–69844. [Google Scholar] [CrossRef]
- Luo, Y.-D.; Dai, C-A.; Chiu, W-Y. Synthesis of P(AA-SA)/ZnO composite latex particles via inverse miniemulsion polymerization and its application in pH regulation and UV shielding. J. Polym. Sci. A Polym. Chem. 2008, 46, 8081–8090. [Google Scholar] [CrossRef]
- Tong, Z. Water-Based Suspension of Polymer Nanoclay Composite Prepared via Miniemulsion Polymerization; Georgia Institute of Technology: Atlanta, GA, USA, 2007. [Google Scholar]
- Asua, J.M. Mapping the Morphology of Polymer-Inorganic Nanocomposites Synthesized by Miniemulsion Polymerization. Macromol. Chem. Phys. 2014, 215, 458–464. [Google Scholar] [CrossRef]
- Landfester, K.; Bechthol, N.; Tiarks, F.; Antonietti, M. Formulation and stability mechanisms of polymerizable miniemulsions. Macromolecules 1999, 32, 5222–5228. [Google Scholar] [CrossRef]
- Jansen, T.G.T.; Meuldijk, J.; Lovell, P.A.; Van Herk, A.M. On the miniemulsion polymerization of very hydrophobic monomers initiated by a completely water-insoluble initiator: Thermodynamics, kinetics, and mechanism. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 2731–2745. [Google Scholar] [CrossRef]
- Whitby, C.P.; Fornasiero, D.; Ralston, J. Effect of adding anionic surfactant on the stability of Pickering emulsions. J. Colloid Interface Sci. 2009, 329, 173–181. [Google Scholar] [CrossRef]
- Chen, W.; Liu, X.; Liu, Y.; Kim, H.-I. Synthesis of microcapsules with polystyrene/ZnO hybrid shell by Pickering emulsion polymerization. Colloid Polym. Sci. 2010, 288, 1393–1399. [Google Scholar] [CrossRef]
- Loosli, F.; Stoll, S. Effect of surfactants, pH and water hardness on the surface properties and agglomeration behavior of engineered TiO nanoparticles. Environ. Sci. Nano. 2017, 4, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Mayer, M.J.J.; Meuldijk, J.; Thoenes, D. Dynamic modeling of limited particle coagulation in emulsion polymerization. J. Appl. Polym. Sci. 1996, 59, 83–90. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Zhang, M.; Zhang, H. Initiator Systems Effect on Particle Coagulation and Particle Size Distribution in One-Step Emulsion Polymerization of Styrene. Polymers 2016, 8, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, X.; Griesing, F.; Yan, R.; Sun, B.; Pauer, W.; Zhu, M.; Sunac, Y.; Moritz, H. One-Pot preparation of poly(styrene-codivinylbenzene)/silver nanoparticles composite microspheres with tunable porosity and their catalytic degradation of methylene blue in aqueous solution. RSC Adv. 2017, 7, 50176–50187. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-C.; Lee, S.-Y. Preparation of highly cross-linked, monodisperse poly(methyl methacrylate) microspheres by dispersion polymerization; Part II. Semi-continuous processes. Macromol. Res. 2008, 16, 293–302. [Google Scholar] [CrossRef]
- Xu, S.; Ma, W.-F.; You, L.-J.; Li, J.-M.; Guo, J.; Hu, J.J.; Wang, C.-C. Toward Designer Magnetite/Polystyrene Colloidal Composite Microspheres with Controllable Nanostructures and Desirable Surface Functionalities. Langmuir 2012, 28, 3271–3278. [Google Scholar] [CrossRef]
- Chaudhary, V.; Sharma, S. Effect of various synthesis parameters on styrene–divinylbenzene copolymer properties. J. Porous Mater. 2019, 26, 1559–1571. [Google Scholar] [CrossRef]
- Liu, G.; Liu, P. Preparation of carboxyl-coated polystyrene nanoparticles using oleic acid. IET Nanobiotechnol. 2009, 3, 23–27. [Google Scholar] [CrossRef]
- Wiley, R.H.; Jin, J.I. Monomer Reactivity Ratios for the Copolymerization of Methyl Methacrylate with Pure Meta- and Pure Para-Divinylbenzene. J. Macromol. Sci. Part A Chem. 1968, 2, 1097–1104. [Google Scholar] [CrossRef]
- Wiley, R.H.; Davis, B. Monomer reactivity ratios for styrene-methyl-14C methacrylate copolymerization. J. Polym. Sci. 1962, 62, S132–S133. [Google Scholar] [CrossRef]
- Tsavalas, J.G.; Schork, F.J.; Landfester, K. Particle morphology development in hybrid miniemulsion polymerization. J. Coatings Technol. Res. 2004, 1, 53–63. [Google Scholar] [CrossRef]
- Kim, D.; Lee, D.Y.; Lee, K.; Choe, S. Effect of crosslinking agents on the morphology of polymer particles produced by one-step seeded polymerization. Macromol. Res. 2009, 17, 250–258. [Google Scholar] [CrossRef]
- Nuasaen, S.; Tangboriboonrat, P. Highly charged hollow latex particles prepared via seeded emulsion polymerization. J. Colloid Interface Sci. 2013, 396, 75–82. [Google Scholar] [CrossRef]
- Baptista, J.G.; Rodrigues, S.; Matsushita, A.F.; Vitorino, C.; Maria, T.M.; Burrows, H.D.; Pais, A.; Valente, A.J. Does poly(vinyl alcohol) act as an amphiphilic polymer? An interaction study with simvastatin. J. Mol. Liq. 2016, 222, 287–294. [Google Scholar] [CrossRef]
- Smijs, T.; Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 2011, 4, 95–112. [Google Scholar] [CrossRef] [Green Version]
- Tang, E.; Cheng, G.; Pang, X.; Ma, X.; Xing, F. Synthesis of nano-ZnO/poly(methyl methacrylate) composite microsphere through emulsion polymerization and its UV-shielding property. Colloid Polym. Sci. 2006, 284, 422–428. [Google Scholar] [CrossRef]
- Urbina, J.E.; Alonso, A.C.; González, M.S.; Albores, A.M.; Durán, A.V. Nanoscale zinc oxide particles for improving the physiological and sanitary quality of a Mexican landrace of red maize. Nanomaterials 2018, 8, 247. [Google Scholar]
- Egerton, T.A.; Tooley, I.R. UV absorption and scattering properties of inorganic-based sunscreens. Int. J. Cosmet. Sci. 2011, 34, 117–122. [Google Scholar] [CrossRef]
- Yoon, J.; Lee, J.H.; Lee, J.B.; Lee, J.H. Highly Scattering Hierarchical Porous Polymer Microspheres with a High-Refractive Index Inorganic Surface for a Soft-Focus Effect. Polymers 2020, 12, 2418. [Google Scholar] [CrossRef]
System | Composition | Particle Size (nm) | Zeta Potential (mV) | %Weight Residue from TGA | Morphology | |||
---|---|---|---|---|---|---|---|---|
Monomer | DVB | KPS | SDS | |||||
1 | St | - | 0.5% | 0.5% | 200.5 ± 24.8 | −26.1 ± 1.1 | 26.7 | Pickering-like |
2 | St | - | 0.5% | 1.5% | 139.8 ± 41.1 | −24.8 ± 0.6 | 12.8 | Pickering-like |
3 | St | - | 0.5% | 3.0% | 64.6 ± 4.3 | −32.3 ± 2.3 | 15.4 | Pickering-like |
4 | St | - | 1% | 1.5% | 170.6 ± 21.0 | −28.2 ± 0.5 | 12.2 | Pickering-like |
5 | St | - | 2% | 1.5% | 174.3 ± 41.2 | −26.7 ± 0.2 | 8.9 | Pickering-like |
6 | St | 1% | 0.5% | 1.5% | 182.3 ± 49.9 | −12.2 ± 5.3 | 26.9 | Pickering-like |
7 | St | 5% | 0.5% | 1.5% | 340.0 ± 48.3 | −17.6 ± 4.1 | 19.5 | Core-shell |
8 | St | 10% | 0.5% | 1.5% | 192.0 ± 67.2 | −18.7 ± 5.4 | 21.9 | Pickering-like |
9 | MMA | 1% | 0.5% | 1.5% | 32.0 ± 6.8 | −23.2 ± 0.5 | 69.9 | - |
10 | MMA | 5% | 0.5% | 1.5% | 118.9 ± 25.8 | −22.3 ± 0.5 | 68.8 | Hollow |
11 | MMA | 10% | 0.5% | 1.5% | 119.7 ± 28.5 | −20.9 ± 0.8 | 42.8 | Hollow |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sudjaipraparat, N.; Suteewong, T.; Tangboriboonrat, P. Facile Control of Structured ZnO Polymeric Nanoparticles through Miniemulsion Polymerization: Kinetic and UV Shielding Effects. Polymers 2021, 13, 2526. https://doi.org/10.3390/polym13152526
Sudjaipraparat N, Suteewong T, Tangboriboonrat P. Facile Control of Structured ZnO Polymeric Nanoparticles through Miniemulsion Polymerization: Kinetic and UV Shielding Effects. Polymers. 2021; 13(15):2526. https://doi.org/10.3390/polym13152526
Chicago/Turabian StyleSudjaipraparat, Narissara, Teeraporn Suteewong, and Pramuan Tangboriboonrat. 2021. "Facile Control of Structured ZnO Polymeric Nanoparticles through Miniemulsion Polymerization: Kinetic and UV Shielding Effects" Polymers 13, no. 15: 2526. https://doi.org/10.3390/polym13152526
APA StyleSudjaipraparat, N., Suteewong, T., & Tangboriboonrat, P. (2021). Facile Control of Structured ZnO Polymeric Nanoparticles through Miniemulsion Polymerization: Kinetic and UV Shielding Effects. Polymers, 13(15), 2526. https://doi.org/10.3390/polym13152526