Application of Micromechanical Modelling for the Evaluation of Elastic Moduli of Hybrid Woven Jute–Ramie Reinforced Unsaturated Polyester Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology
2.3. Micromechanical Model
2.3.1. Rule of Mixture (ROM) and Inverse Rule of Mixture (IROM)
2.3.2. Halpin-Tsai (H-T)
2.3.3. Hirsch Model (HI)
3. Result
3.1. Tensile Modulus for Single Fibre Composite
3.2. Micromechanical Model for Single Fibre Composite
3.3. Hybrid Fibre Composite
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luinge, H.; Warnet, L.L. On an application of multi-material composite laminates in the aerospace sector. Adv. Compos. Hybrid Mater. 2020, 3, 294–302. [Google Scholar] [CrossRef]
- Mazlan, N.; Yusoff, M.Z.M.; Ariff, A.H.M. Investigation of Alkaline Surface Treatment Effected on Flax Fibre Woven Fabric with Biodegradable Polymer Based on Mechanical Properties. J. Eng. Technol. Sci. 2020, 52, 677–690. [Google Scholar]
- Sapuan, S.M.; Aulia, H.S.; Ilyas, R.A.; Atiqah, A.; Dele-Afolabi, T.T.; Nurazzi, M.N.; Supian, A.B.M.; Atikah, M.S.N. Mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. Polymers 2020, 12, 2211. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, M.; Jayakrishna, K.; Sultan, M.T.H.; Manikandan, M.; Mugeshkannan, V.; Shah, A.U.M.; Safri, S.N.A. The hydroscopic effect on dynamic and thermal properties of woven jute, banana, and intra-ply hybrid natural fiber composites. J. Mater. Res. Technol. 2020, 9, 10305–10315. [Google Scholar] [CrossRef]
- Carmisciano, S.; De Rosa, I.M.; Sarasini, F.; Tamburrano, A.; Valente, M. Basalt woven fiber reinforced vinylester composites: Flexural and electrical properties. Mater. Des. 2011, 32, 337–342. [Google Scholar] [CrossRef]
- Topalbekiroğlu, M.; Kaynak, H.K. The effect of weave type on dimensional stability of woven fabrics. Int. J. Cloth. Sci. Technol. 2008, 20, 281–288. [Google Scholar] [CrossRef]
- Saiman, M.P.; Wahab, M.S.; Wahit, M.U. The effect of fabric weave on the tensile strength of woven kenaf reinforced unsaturated polyester composite. In Proceedings of the International Colloquium in Textile Engineering, Fashion, Apparel and Design 2014 (ICTEFAD 2014); Springer: Berlin/Heidelberg, Germany, 2014; pp. 25–29. [Google Scholar]
- Dixit, A.; Mali, H.S. Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: A review. Mech. Compos. Mater. 2013, 49, 1–20. [Google Scholar] [CrossRef]
- Misra, M.; Pandey, J.K.; Mohanty, A. Biocomposites: Design and Mechanical Performance; Woodhead Publishing: Sawston, UK, 2015; ISBN 178242394X. [Google Scholar]
- Dissanayake, N.P.J.; Summerscales, J. Life cycle assessment for natural fibre composites. Green Compos. Nat. Resour. 2013, 8, 157–186. [Google Scholar]
- Cheung, H.; Ho, M.; Lau, K.; Cardona, F.; Hui, D. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos. Part B Eng. 2009, 40, 655–663. [Google Scholar] [CrossRef]
- Malviya, R.K.; Singh, R.K.; Purohit, R.; Sinha, R. Natural fibre reinforced composite materials: Environmentally better life cycle assessment–A case study. Mater. Today Proc. 2020, 26, 3157–3160. [Google Scholar] [CrossRef]
- Hamdan, M.H.M.; Siregar, J.P.; Cionita, T.; Jaafar, J.; Efriyohadi, A.; Junid, R.; Kholil, A. Water absorption behaviour on the mechanical properties of woven hybrid reinforced polyester composites. Int. J. Adv. Manuf. Technol. 2019, 104, 1075–1086. [Google Scholar] [CrossRef]
- Tezara, C.; Zalinawati, M.; Siregar, J.P.; Jaafar, J.; Hamdan, M.H.M.; Oumer, A.N.; Chuah, K.H. Effect of Stacking Sequences, Fabric Orientations, and Chemical Treatment on the Mechanical Properties of Hybrid Woven Jute–Ramie Composites. Int. J. Precis. Eng. Manuf. Technol. 2021, 1–13. [Google Scholar]
- Mohamad Hamdan, M.H.; Siregar, J.P.; Thomas, S.; Jacob, M.J.; Jaafar, J.; Tezara, C. Mechanical performance of hybrid woven jute–roselle-reinforced polyester composites. Polym. Polym. Compos. 2019, 27, 407–418. [Google Scholar] [CrossRef]
- Misnon, I.M.; Islam, M.M.; Epaarachchi, J.A.; Lau, K.T.; Wang, H. Fabric Parameter Effect on the Mechanical Properties of Woven Hemp Fabric Reinforced Composites as an Alternative to Wood Products. Adv Res Text Eng 2016, 1, 1–11. [Google Scholar]
- Hamdan, A.; Mustapha, F.; Ahmad, K.A.; Rafie, A.S.M.; Ishak, M.R.; Ismail, A.E. The Effect of Customized Woven and Stacked Layer Orientation on Tensile and Flexural Properties of Woven Kenaf Fibre Reinforced Epoxy Composites. Int. J. Polym. Sci. 2016, 2016, 1–11. [Google Scholar] [CrossRef]
- Prasath, K.A.; Krishnan, B.R.; Arun, C.K. Mechanical properties of woven fabric Basalt/jute fibre reinforced polymer hybrid composites. Int. J. Mech. Eng 2013, 2, 279–290. [Google Scholar]
- Bandung, P.S. A Study on Cotton-Ramie Fabric Reinforced Composites. Int. J. Mater. Sci. 2017, 12, 117–125. [Google Scholar]
- Luo, Z.; Li, X.; Shang, J.; Zhu, H.; Fang, D. Modified rule of mixtures and Halpin–Tsai model for prediction of tensile strength of micron-sized reinforced composites and Young’s modulus of multiscale reinforced composites for direct extrusion fabrication. Adv. Mech. Eng. 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Landel, R.F.; Nielsen, L.E. Mechanical Properties of Polymers and Composites; CRC Press: Boca Raton, FL, USA, 1993; ISBN 1482277433. [Google Scholar]
- Adams, D.F.; Doner, D.R. Longitudinal shear loading of a unidirectional composite. J. Compos. Mater. 1967, 1, 4–17. [Google Scholar] [CrossRef]
- Johnson, R.D.J.; Arumugaprabu, V.; Ko, T.J. Theoretical and Experimental Evaluation of Tensile Property of Sansevieria Cylindrica Reinforced Wood Waste Biochar Tailored Vinyl Ester Composite. Int. J. Eng. Adv. Technol. 2019, 9, 34–37. [Google Scholar]
- Andre, N.G.; Ariawan, D.; Mohd Ishak, Z.A. Mechanical properties and micromechanical analysis of nonwoven kenaf fibre/epoxy composites produced by resin transfer moulding. J. Compos. Mater. 2017, 51, 1875–1885. [Google Scholar] [CrossRef]
- Kalaprasad, G.; Joseph, K.; Thomas, S.; Pavithran, C. Theoretical modelling of tensile properties of short sisal fibre-reinforced low-density polyethylene composites. J. Mater. Sci. 1997, 32, 4261–4267. [Google Scholar] [CrossRef]
- Osoka, E.C.; Onukwuli, O.D. A modified Halpin-Tsai model for estimating the modulus of natural fiber reinforced composites. Int. J. Eng. Sci. Inven. 2018, 7, 63–70. [Google Scholar]
- Giner, E.; Vercher, A.; Marco, M.; Arango, C. Estimation of the reinforcement factor ξ for calculating the transverse stiffness E2 with the Halpin–Tsai equations using the finite element method. Compos. Struct. 2015, 124, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Sreenivasan, V.S.; Somasundaram, S.; Ravindran, D.; Manikandan, V.; Narayanasamy, R. Microstructural, physico-chemical and mechanical characterization of Sansevieria cylindrica fibres–An exploratory investigation. Mater. Des. 2011, 32, 453–461. [Google Scholar] [CrossRef]
- Athijayamani, A.; Thiruchitrambalam, M.; Jappes, J.T.W.; Alavudeen, A. Effects of fibre content on the mechanical properties of short roselle/sisal fibre polyester hybrid composite. Int. J. Comput. Aided Eng. Technol. 2011, 3, 538–546. [Google Scholar] [CrossRef]
Jute | Ramie | ||
---|---|---|---|
Fabric thickness (mm) | 1.23–1.59 | 1.14–1.82 | |
Warp density (ends/2 cm) | df1 | 10 | 10 |
Weft density (ends/2 cm) | df2 | 10 | 10 |
Yarn spacing-Warp (mm) | P1 | 2 | 2 |
Yarn spacing-Weft (mm) | P2 | 2 | 2 |
Warp Yarn density (tex) | N1 | 326.2 | 314.9 |
Weft Yarn density (tex) | N2 | 316.3 | 442.4 |
Areal density (gm−2) | Fw | 324.35 | 385.45 |
Warp cover factor | C1 | 0.67 | 0.65 |
Weft cover factor | C2 | 0.66 | 0.77 |
Total cover factor | K | 0.89 | 0.92 |
Fabric porosity | 0.18 | 0.22 |
No | Type of Composites | Jute wt. (g) | Ramie wt. (g) | Total wt. of Fibre (g) | Resin wt. (g) | Fibre wt. Fraction (w/w) | Fibre wt. Fraction (v/v) | Matrix wt. Fraction (w/w) |
---|---|---|---|---|---|---|---|---|
1 | UPE | 0.00 | 0.00 | 0.00 | 200.00 | 0.00 | 0.0 | 100.00 |
2 | J | 19.46 | 0.00 | 19.46 | 200.00 | 8.87 | 7.31 | 91.13 |
3 | JJ | 37.53 | 0.00 | 37.53 | 200.00 | 15.80 | 13.21 | 84.20 |
4 | JJJ | 64.98 | 0.00 | 64.98 | 200.00 | 24.52 | 20.85 | 75.48 |
5 | JJJJ | 82.12 | 0.00 | 82.12 | 200.00 | 29.10 | 24.97 | 70.89 |
6 | R | 0.00 | 21.54 | 21.54 | 200.00 | 9.72 | 7.93 | 90.28 |
7 | RR | 0.00 | 41.04 | 41.04 | 200.00 | 17.02 | 14.1 | 82.97 |
8 | RRR | 0.00 | 63.36 | 63.36 | 200.00 | 24.06 | 20.22 | 75.94 |
9 | RRRR | 0.00 | 84.39 | 84.39 | 200.00 | 29.67 | 25.24 | 70.33 |
10 | JR | 22.05 | 17.1 | 39.15 | 200.00 | 16.37 | 13.41 | 83.63 |
11 | JJR | 35.73 | 22.14 | 57.87 | 200.00 | 22.44 | 18.53 | 77.56 |
12 | JRJ | 45.18 | 21.69 | 66.87 | 200.00 | 25.06 | 20.79 | 74.94 |
13 | RJR | 23.22 | 44.46 | 67.68 | 200.00 | 25.28 | 20.89 | 74.72 |
14 | JRRJ | 38.33 | 43.65 | 81.98 | 200.00 | 29.07 | 24.09 | 70.93 |
15 | JJRR | 36.34 | 42.34 | 78.68 | 200.00 | 28.23 | 23.38 | 71.77 |
16 | JRJR | 35.79 | 43.71 | 79.5 | 200.00 | 28.44 | 23.55 | 71.56 |
17 | RJJR | 37.61 | 44.87 | 82.48 | 200.00 | 29.20 | 24.19 | 70.80 |
Tensile Modulus (GPa) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Specimen | UPE | J | JJ | JJJ | JJJJ | R | RR | RRR | RRRR |
1st | 0.79 | 1.09 | 1.07 | 1.14 | 1.17 | 1.08 | 0.95 | 1.28 | 1.41 |
2nd | 0.75 | 0.92 | 1.10 | 1.13 | 1.01 | 0.93 | 1.01 | 1.25 | 1.28 |
3rd | 0.76 | 0.95 | 1.11 | 1.10 | 1.28 | 0.86 | 1.1 | 1.36 | 1.15 |
4th | 0.78 | 1.12 | 1.02 | 1.07 | 1.37 | 1.06 | 1.14 | 1.24 | 1.43 |
5th | 0.74 | 1.03 | 1.01 | 1.08 | 1.39 | 0.85 | 1.13 | 1.36 | 1.40 |
Average | 0.77 | 1.02 | 1.06 | 1.11 | 1.24 | 0.96 | 1.08 | 1.30 | 1.33 |
Error | 0.02 | 0.09 | 0.05 | 0.03 | 0.16 | 0.11 | 0.08 | 0.06 | 0.12 |
Tensile Modulus (GPa) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Specimen | JR | JJR | JRJ | JRR | RJR | JRRJ | JJRR | JRJR | RJJR |
1st | 0.95 | 1.16 | 1.25 | 1.17 | 1.17 | 1.36 | 1.46 | 1.47 | 1.26 |
2nd | 1.03 | 1.18 | 1.15 | 0.98 | 1.20 | 1.06 | 1.43 | 1.32 | 1.24 |
3rd | 1.06 | 1.14 | 1.26 | 1.25 | 1.20 | 1.38 | 1.28 | 1.14 | 1.28 |
4th | 1.11 | 1.19 | 1.22 | 1.10 | 1.18 | 1.09 | 1.29 | 1.45 | 1.30 |
5th | 1.17 | 1.17 | 1.06 | 0.98 | 1.16 | 1.40 | 1.46 | 1.38 | 1.36 |
Average | 1.06 | 1.17 | 1.19 | 1.10 | 1.18 | 1.26 | 1.38 | 1.35 | 1.29 |
Error | 0.08 | 0.06 | 0.08 | 0.12 | 0.02 | 0.17 | 0.09 | 0.13 | 0.05 |
Source | Degree of Freedom | Adjusted Sum of Square | Adjusted Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Layering size | 1st | 4 | 0.37373 | 0.093433 | 27.90 | 0.00000284 |
Error | 2nd | 13 | 0.04353 | 0.003349 | ||
Total | 3rd | 17 | 0.41727 |
Volume Content | ROM Axial | ROM Transverse | H-T EMP = 1 | H-T EMP = 2 | HI |
---|---|---|---|---|---|
0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
7.31 | 0.16 | −0.19 | −0.13 | −0.09 | −0.05 |
13.21 | 0.44 | −0.17 | −0.06 | 0.01 | 0.07 |
20.85 | 0.77 | −0.14 | 0.05 | 0.16 | 0.22 |
24.97 | 0.77 | −0.19 | 0.02 | 0.15 | 0.19 |
Volume Content | ROM Axial | ROM Transverse | H-T EMP = 1 | H-T EMP = 2 | HI |
---|---|---|---|---|---|
0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
7.93 | 0.11 | −0.13 | −0.08 | −0.02 | −0.04 |
14.1 | 0.19 | −0.18 | −0.09 | 0.02 | −0.03 |
20.22 | 0.17 | −0.27 | −0.15 | −0.02 | −0.09 |
25.24 | 0.28 | −0.24 | −0.09 | 0.07 | −0.03 |
ROM | IROM | H-T | HI | |
---|---|---|---|---|
Stress parameter, κ | Stress parameter, κ | Stress parameter, ξ | Stress parameter, κ | |
Parameter value | 1/2 | 1/5 | 1.25–1.5 | 0.9 |
ROM = 1/2 | IROM = 1/5 | HT = 1.375 | HI = 0.9 | |
---|---|---|---|---|
JR | −0.68 | −0.65 | −1.13 | −0.38 |
JJR | −0.44 | −0.38 | −1.17 | −0.44 |
JRJ | −0.32 | −0.24 | −1.18 | −0.45 |
JRR | −0.44 | −0.47 | −1.18 | −0.45 |
RJR | −0.26 | −0.24 | −1.19 | −0.47 |
JRRJ | −0.30 | −0.28 | −1.19 | −0.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadi, A.E.; Hamdan, M.H.M.; Siregar, J.P.; Junid, R.; Tezara, C.; Irawan, A.P.; Fitriyana, D.F.; Rihayat, T. Application of Micromechanical Modelling for the Evaluation of Elastic Moduli of Hybrid Woven Jute–Ramie Reinforced Unsaturated Polyester Composites. Polymers 2021, 13, 2572. https://doi.org/10.3390/polym13152572
Hadi AE, Hamdan MHM, Siregar JP, Junid R, Tezara C, Irawan AP, Fitriyana DF, Rihayat T. Application of Micromechanical Modelling for the Evaluation of Elastic Moduli of Hybrid Woven Jute–Ramie Reinforced Unsaturated Polyester Composites. Polymers. 2021; 13(15):2572. https://doi.org/10.3390/polym13152572
Chicago/Turabian StyleHadi, Agung Efriyo, Mohammad Hazim Mohamad Hamdan, Januar Parlaungan Siregar, Ramli Junid, Cionita Tezara, Agustinus Purna Irawan, Deni Fajar Fitriyana, and Teuku Rihayat. 2021. "Application of Micromechanical Modelling for the Evaluation of Elastic Moduli of Hybrid Woven Jute–Ramie Reinforced Unsaturated Polyester Composites" Polymers 13, no. 15: 2572. https://doi.org/10.3390/polym13152572
APA StyleHadi, A. E., Hamdan, M. H. M., Siregar, J. P., Junid, R., Tezara, C., Irawan, A. P., Fitriyana, D. F., & Rihayat, T. (2021). Application of Micromechanical Modelling for the Evaluation of Elastic Moduli of Hybrid Woven Jute–Ramie Reinforced Unsaturated Polyester Composites. Polymers, 13(15), 2572. https://doi.org/10.3390/polym13152572