Blended Anion Exchange Membranes for Vanadium Redox Flow Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Brominated Poly (Phenylene Oxide) (Br–PPO)
2.3. Synthesis of Poly(Phenylene Oxide) Containing Quaternary Ammonium (QA–PPO)
2.4. Preparation of Blended Anion Exchange Membranes (BAEMs)
2.5. Experimental Techniques
2.5.1. H–NMR
2.5.2. Ion Exchange Capacity, Water Uptake, Swelling Ratio and Hydration Number
2.5.3. Mechanical Properties: Tensile Strength, Elongation at Break and Young’s Modulus
2.5.4. Hydroxide Conductivity
2.5.5. Vanadium Permeability
2.5.6. Redox Flow Battery Measurement
3. Results and Discussions
3.1. Structure Analysis
3.2. Fabrication of Blended Anion Exchange Membranes (Baems) with Polyvinylidene Fluoride (PVDF)
3.3. Mechanical Properties
3.4. IEC, WU, SR and λ Values
3.5. Ion Conductivity (Hydroxide Conductivity)
3.6. Vanadium Ion Permeability
3.7. Open Circuit Voltage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AL Shaqsi, A.Z.; Sopian, K.; Al-Hinai, A. Review of Energy Storage Services, Applications, Limitations, and Benefits. Energy Rep. 2020, 6, 288–306. [Google Scholar] [CrossRef]
- Sánchez-Díez, E.; Ventosa, E.; Guarnieri, M.; Trovò, A.; Flox, C.; Marcilla, R.; Soavi, F.; Mazur, P.; Aranzabe, E.; Ferret, R. Redox Flow Batteries: Status and Perspective Towards Sustainable Stationary Energy Storage. J. Power Sources 2021, 481, 228804. [Google Scholar] [CrossRef]
- Winsberg, J.; Hagemann, T.; Janoschka, T.; Hager, M.D.; Schubert, U.S. Redox-Flow Batteries: From Metals to Organic Redox-Active Materials. Angew. Chem. Int. Ed. 2017, 56, 686–711. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.J.; Park, M.; Kim, Y.; Kim, J.H.; Dou, S.X.; Skyllas-Kazacos, M. A Technology Review of Electrodes and Reaction Mechanisms in Vanadium Redox Flow Batteries. J. Mater. Chem. A 2015, 3, 16913–16933. [Google Scholar] [CrossRef]
- Cunha, Á.; Martins, J.; Rodrigues, N.; Brito, F. Vanadium Redox Flow Batteries: A Technology Review. Int. J. Energy Res. 2015, 39, 889–918. [Google Scholar] [CrossRef]
- Weber, S.; Peters, J.F.; Baumann, M.; Weil, M. Life Cycle Assessment of a Vanadium Redox Flow Battery. Environ. Sci. Technol. 2018, 52, 10864–10873. [Google Scholar] [CrossRef]
- Jiang, H.; Sun, J.; Wei, L.; Wu, M.; Shyy, W.; Zhao, T. A High Power Density and Long Cycle Life Vanadium Redox Flow Battery. Energy Storage Mater. 2020, 24, 529–540. [Google Scholar] [CrossRef]
- Schwenzer, B.; Zhang, J.; Kim, S.; Li, L.; Liu, J.; Yang, Z. Membrane Development for Vanadium Redox Flow Batteries. ChemSusChem 2011, 4, 1388–1406. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Keith, R.; Aaron, D.S.; Lawton, J.S.; Papandrew, A.P.; Zawodzinski, T.A. Proton Exchange Membrane Performance Characterization in VRFB. ECS Trans. 2012, 41, 25–34. [Google Scholar] [CrossRef]
- Jiang, B.; Wu, L.; Yu, L.; Qiu, X.; Xi, J. A Comparative Study of Nafion Series Membranes for Vanadium Redox Flow Batteries. J. Membr. Sci. 2016, 510, 18–26. [Google Scholar] [CrossRef]
- Son, T.Y.; Ko, T.H.; Vijayakumar, V.; Kim, K.; Nam, S.Y. Anion Exchange Composite Membranes Composed of Poly (Phenylene Oxide) Containing Quaternary Ammonium and Polyethylene Support for Alkaline Anion Exchange Membrane Fuel Cell Applications. Solid State Ion. 2020, 344, 115153. [Google Scholar] [CrossRef]
- Son, T.Y.; Kim, T.; Nam, S.Y. Crosslinked Pore-Filling Anion Exchange Membrane using the Cylindrical Centrifugal Force for Anion Exchange Membrane Fuel Cell System. Polymers 2020, 12, 2758. [Google Scholar] [CrossRef]
- Son, T.Y.; Kim, D.J.; Vijayakumar, V.; Kim, K.; Kim, D.S.; Nam, S.Y. Anion Exchange Membrane using Poly (Ether Ether Ketone) Containing Imidazolium for Anion Exchange Membrane Fuel Cell (AEMFC). J. Ind. Eng. Chem. 2020, 89, 175–182. [Google Scholar] [CrossRef]
- Li, N.; Cui, Z.; Zhang, S.; Li, S.; Zhang, F. Preparation and Evaluation of a Proton Exchange Membrane Based on Oxidation and Water Stable Sulfonated Polyimides. J. Power Sources 2007, 172, 511–519. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lim, D.; Chae, J.E.; Choi, J.; Kim, B.H.; Lee, S.Y.; Yoon, C.W.; Nam, S.Y.; Jang, J.H.; Henkensmeier, D.; et al. Base Tolerant Polybenzimidazolium Hydroxide Membranes for Solid Alkaline-Exchange Membrane Fuel Cells. J. Membr. Sci. 2016, 514, 398–406. [Google Scholar] [CrossRef]
- Li, S.; Zhu, X.; Liu, D.; Sun, F. A Highly Durable Long Side-Chain Polybenzimidazole Anion Exchange Membrane for AEMFC. J. Membr. Sci. 2018, 546, 15–21. [Google Scholar] [CrossRef]
- Son, T.Y.; Choi, D.H.; Park, C.H.; Nam, S.Y. Preparation and Electrochemical Characterization of Membranes using Submicron Sized Particles with High Ion Exchange Capacity for Electro-Adsorptive Deionization. J. Nanosci. Nanotechnol. 2017, 17, 7743–7750. [Google Scholar] [CrossRef]
- Mohanty, A.D.; Ryu, C.Y.; Kim, Y.S.; Bae, C. Stable Elastomeric Anion Exchange Membranes Based on Quaternary Ammonium-Tethered Polystyrene-b-Poly (Ethylene-Co-Butylene)-b-Polystyrene Triblock Copolymers. Macromolecules 2015, 48, 7085–7095. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Park, S.; Han, J.; Maurya, S.; Mohanty, A.D.; Tian, D.; Saikia, N.; Hickner, M.A.; Ryu, C.Y.; Tuckerman, M.E. Synthesis of Aromatic Anion Exchange Membranes by Friedel–Crafts Bromoalkylation and Cross-Linking of Polystyrene Block Copolymers. Macromolecules 2019, 52, 2139–2147. [Google Scholar] [CrossRef]
- Khataee, A.; Pan, D.; Olsson, J.S.; Jannasch, P.; Lindström, R.W. Asymmetric Cycling of Vanadium Redox Flow Batteries with a Poly(Arylene Piperidinium)-Based Anion Exchange Membrane. J. Power Sources 2021, 483, 229202. [Google Scholar] [CrossRef]
- Chen, N.; Lee, Y.M. Anion Exchange Polyelectrolytes for Membranes and Ionomers. Prog. Polym. Sci. 2021, 113, 101345. [Google Scholar] [CrossRef]
- Vincent, I.; Bessarabov, D. Low Cost Hydrogen Production by Anion Exchange Membrane Electrolysis: A Review. Renew. Sustain. Energy Rev. 2018, 81, 1690–1704. [Google Scholar] [CrossRef]
- Chen, D.; Hickner, M.A.; Agar, E.; Kumbur, E.C. Selective Anion Exchange Membranes for High Coulombic Efficiency Vanadium Redox Flow Batteries. Electrochem. Commun. 2013, 26, 37–40. [Google Scholar] [CrossRef]
- Yun, S.; Parrondo, J.; Ramani, V. Derivatized Cardo-Polyetherketone Anion Exchange Membranes for all-Vanadium Redox Flow Batteries. J. Mater. Chem. A 2014, 2, 6605–6615. [Google Scholar] [CrossRef]
- Zhang, D.; Yan, X.; He, G.; Zhang, L.; Liu, X.; Zhang, F.; Hu, M.; Dai, Y.; Peng, S. An Integrally Thin Skinned Asymmetric Architecture Design for Advanced Anion Exchange Membranes for Vanadium Flow Batteries. J. Mater. Chem. A 2015, 3, 16948–16952. [Google Scholar] [CrossRef]
- Huang, K.; Li, X.; Liu, S.; Tan, N.; Chen, L. Research Progress of Vanadium Redox Flow Battery for Energy Storage in China. Renew. Energy 2008, 33, 186–192. [Google Scholar] [CrossRef]
- Mohammadi, T.; Kazacos, M.S. Modification of Anion-Exchange Membranes for Vanadium Redox Flow Battery Applications. J. Power Sources 1996, 63, 179–186. [Google Scholar] [CrossRef]
- Mai, Z.; Zhang, H.; Li, X.; Xiao, S.; Zhang, H. Nafion/polyvinylidene Fluoride Blend Membranes with Improved Ion Selectivity for Vanadium Redox Flow Battery Application. J. Power Sources 2011, 196, 5737–5741. [Google Scholar] [CrossRef]
- Im, K.S.; Lee, J.W.; Jang, J.Y.; Nam, S.Y. Hydrophilic Coating and Characterization of PVDF Membrane with Flower Type Cross-section made from Thermally Induced Phase Separation. Membr. J. 2019, 29, 362–376. [Google Scholar] [CrossRef]
- Cho, H.; Atanasov, V.; Krieg, H.M.; Kerres, J.A. Novel Anion Exchange Membrane Based on Poly (Pentafluorostyrene) Substituted with Mercaptotetrazole Pendant Groups and its Blend with Polybenzimidazole for Vanadium Redox Flow Battery Applications. Polymers 2020, 12, 915. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.; Lee, B.; Yun, D.; Al Munsur, A.Z.; Chae, J.E.; Lee, S.Y.; Kim, H.J.; Nam, S.Y.; Park, C.H.; Kim, T. Poly (2,6-dimethyl-1,4-phenylene oxide)s with various head groups: Effect of head groups on the properties of anion exchange membranes. ACS. Appl. Mater. Interfaces 2018, 10, 41279–41292. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Hickner, M.A.; Agar, E.; Kumbur, E.C. Optimizing Membrane Thickness for Vanadium Redox Flow Batteries. J. Membr. Sci. 2013, 437, 108–113. [Google Scholar] [CrossRef]
- Huang, X.; Wang, W.; Liu, Y.; Wang, H.; Zhang, Z.; Fan, W.; Li, L. Treatment of Oily Waste Water by PVP Grafted PVDF Ultrafiltration Membranes. Chem. Eng. J. 2015, 273, 421–429. [Google Scholar] [CrossRef]
- Brewis, D.; Mathieson, I.; Sutherland, I.; Cayless, R.; Dahm, R. Pretreatment of Poly (Vinyl Fluoride) and Poly (Vinylidene Fluoride) with Potassium Hydroxide. Int. J. Adhes. Adhes. 1996, 16, 87–95. [Google Scholar] [CrossRef]
- Elgammal, R.A.; Tang, Z.; Sun, C.; Lawton, J.; Zawodzinski, T.A. Species Uptake and Mass Transport in Membranes for Vanadium Redox Flow Batteries. Electrochim. Acta 2017, 237, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Jeon, J.Y.; Han, J.; Kim, J.H.; Bae, C.; Kim, S. Poly(Terphenylene) Anion Exchange Membranes with High Conductivity and Low Vanadium Permeability for Vanadium Redox Flow Batteries (VRFBs). J. Membr. Sci. 2020, 598, 117665. [Google Scholar] [CrossRef]
- Xi, J.; Wu, Z.; Qiu, X.; Chen, L. Nafion/SiO2 Hybrid Membrane for Vanadium Redox Flow Battery. J. Power Sources 2007, 166, 531–536. [Google Scholar] [CrossRef]
- Lu, S.; Wu, C.; Liang, D.; Tan, Q.; Xiang, Y. Layer-by-Layer Self-Assembly of Nafion–[CS–PWA] Composite Membranes with Suppressed Vanadium Ion Crossover for Vanadium Redox Flow Battery Applications. RSC Adv. 2014, 4, 24831–24837. [Google Scholar] [CrossRef]
Membrane | Mechanical Properties | ||
---|---|---|---|
Tensile Strength (MPa) | Eleongation at Break (%) | Young’s Modulus (MPa) | |
QA–PPO | 22.5 | 4.2 | 535.7 |
QA–PPO/PVDF(2/8) | 29.6 | 7.6 | 695.3 |
QA–PPO/PVDF(3/7) | 25.3 | 9.0 | 665.2 |
QA–PPO/PVDF(4/6) | 23.7 | 11.2 | 612.3 |
Sample | IEC Value (meq/g) | Water Uptake (%) | Swelling Ratio (%) | Hydration Number (λ) |
---|---|---|---|---|
QA–PPO | 2.31 | 55.6 | 18.2 | 13.37 |
QA–PPO/PVDF(2/8) | 0.61 | 11.5 | 3.9 | 10.47 |
QA–PPO/PVDF(3/7) | 1.08 | 17.0 | 7.4 | 8.74 |
QA–PPO/PVDF(4/6) | 1.75 | 24.5 | 13.8 | 7.78 |
Sample | Hydroxide Conductivity (mS/cm) | |||
---|---|---|---|---|
In DI Water | ||||
25 °C | 40 °C | 60 °C | 80 °C | |
Nafion115 | 91 | 121 | 142 | 175 |
QA–PPO/PVDF(2/8) | 50 | 65 | 84 | 85 |
QA–PPO/PVDF(3/7) | 48 | 63 | 77 | 82 |
QA–PPO/PVDF(4/6) | 45 | 50 | 70 | 79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, T.Y.; Im, K.S.; Jung, H.N.; Nam, S.Y. Blended Anion Exchange Membranes for Vanadium Redox Flow Batteries. Polymers 2021, 13, 2827. https://doi.org/10.3390/polym13162827
Son TY, Im KS, Jung HN, Nam SY. Blended Anion Exchange Membranes for Vanadium Redox Flow Batteries. Polymers. 2021; 13(16):2827. https://doi.org/10.3390/polym13162827
Chicago/Turabian StyleSon, Tae Yang, Kwang Seop Im, Ha Neul Jung, and Sang Yong Nam. 2021. "Blended Anion Exchange Membranes for Vanadium Redox Flow Batteries" Polymers 13, no. 16: 2827. https://doi.org/10.3390/polym13162827
APA StyleSon, T. Y., Im, K. S., Jung, H. N., & Nam, S. Y. (2021). Blended Anion Exchange Membranes for Vanadium Redox Flow Batteries. Polymers, 13(16), 2827. https://doi.org/10.3390/polym13162827