Interaction between Filler and Polymeric Matrix in Nanocomposites: Magnetic Approach and Applications
Abstract
:1. Introduction
2. Composites
2.1. Polymer Nanocomposites
2.2. Principles
2.3. Effect of the Polymer
3. Role of NP-Polymer Interactions in Interfacial Dynamics
3.1. Nanoparticles Diffusion in Polymer Melts
3.2. Non-Diffuse NP Dynamics
4. Approaches to Nanotechnology and Polymer Research
4.1. Dynamics in Polymer Nanocomposites
4.2. Polymeric Matrix (PM)
4.3. Filler
4.4. Effect of Filler
5. Magnetic Nanoparticles (MNPs)
5.1. Properties of MNPs
5.2. Magnetic Nanocomposites
6. Applications
6.1. Biosensors
6.2. Drug Delivery
6.3. Theranostics
6.4. Imaging
6.5. Bioremediation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahnaz, S. Magnetic materials and magnetic nanocomposites for biomedical application. Micro. Nano Technol. 2019, 77–95. [Google Scholar] [CrossRef]
- Buzug, T.M.; Borgert, J.; Knopp, T.; Biederer, S.; Sattel, T.F.; Erbe, M.; Lüdtke-Buzug, K. Magnetic Nanoparticles: Particle Science, Imaging Technology, and Clinical Applications; World Scientific: Singapore, 2010; ISBN 978-981-4324-68-7. [Google Scholar]
- Synthesis, K. Properties and Applications of Magnetic Nanoparticles and Nanowires—A Brief Introduction. Magnetochemistry 2019, 5, 61. [Google Scholar] [CrossRef] [Green Version]
- Ogin, S.L.; Brøndsted, P.; Zangenberg, J. Composite materials: Constituents, architecture, and generic damage. In Modeling Damage, Fatigue and Failure of Composite Materials; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 3–23. [Google Scholar]
- Kenny, J.M.; Nicolais, L. Science and Technology of Polymer Composites. Compr. Polym. Sci. Suppl. 1989, 471–525. [Google Scholar] [CrossRef]
- Parhi, R. Nanocomposite for transdermal drug delivery. Appl. Nanocomposite Mater. Drug Deliv. 2018, 353–390. [Google Scholar] [CrossRef]
- Jordan, J.; Jacob, K.I.; Tannenbaum, R.; Sharaf, M.A.; Jasiuk, I. Experimental trends in polymer nanocomposites. Mater. Sci. Eng. A 2005, 393, 1–11. [Google Scholar] [CrossRef]
- Hanemann, T.; Szabó, D.V. Polymer-Nanoparticle Composites: From Synthesis to Modern Applications. Materials 2010, 3, 3468–3517. [Google Scholar] [CrossRef]
- Zaferani, S.H. Polymer-based Nanocomposites for Energy and Environmental Applications. Compos. Sci. Eng. 2018, 1–25. [Google Scholar] [CrossRef]
- Karak, N. Fundamentals of Nanomaterials and Polymer Nanocomposites. Nanomater. Polym. Nanocomposites Raw Mater. Appl. 2018, 1–45. [Google Scholar] [CrossRef]
- Akpan, E.I.; Shen, X.; Wetzel, B.; Friedrich, K. Polymer Composites with Functionalized Nanoparticles: Synthesis, Properties, and Applications; Woodhead Publishing: Sawston, UK, 2018; pp. 47–83. [Google Scholar]
- Zare, Y. Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos. Part. A Appl. Sci. Manuf. 2016, 84, 158–164. [Google Scholar] [CrossRef]
- Urrejola, M.C.; Soto, L.V.; Zumarán, C.C.; Peñaloza, J.P.; Álvarez, B.; Fuentevilla, I.; Haidar, Z.S. Sistemas de nanopartículas poliméricas II: Estructura, métodos de elaboración, características, propiedades, biofuncionalización y tecnologías de auto-ensamblaje capa por capa (layer-by-layer self-assembly). Int. J. Morphol. 2018, 36, 1463–1471. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Gaete, C. Nanopartículas Poliméricas: Tecnología y Aplicaciones Farmaceuticas. Rev. Farm. 2014, 7, 7–16. [Google Scholar]
- Mishra, B.; Patel, B.B.; Tiwari, S. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 9–24. [Google Scholar] [CrossRef]
- Schärtl, W. Current directions in core-shell nanoparticle design. Nanoscale 2010, 2, 829–843. [Google Scholar] [CrossRef]
- Carrillo, J.-M.Y.; Cheng, S.; Kumar, R.; Goswami, M.; Sokolov, A.P.; Sumpter, B.G. Untangling the Effects of Chain Rigidity on the Structure and Dynamics of Strongly Adsorbed Polymer Melts. Macromolecules 2015, 48, 4207–4219. [Google Scholar] [CrossRef]
- Vitrac, O.; Hayert, M. Identification of Diffusion Transport Properties from Desorption/Sorption Kinetics: An Analysis Based on a New Approximation of Fick Equation during Solid—Liquid Contact. Am. Chem. Soc. 2006, 45, 7941–7956. [Google Scholar] [CrossRef]
- Hagita, K.; Morita, H.; Takano, H. Molecular Dynamics Simulation Study of a Fracture of Filler-Filled Polymer Nanocomposites. Polymer 2016, 99, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Böhm, M.C.; Müller-Plathe, F. Role of the Interfacial Area for Structure and Dynamics in Polymer Nanocomposites: Molecular Dynamics Simulations of Polystyrene with Silica Nanoparticles of Different Shapes. Mater. Res. Express 2016, 3, 105–301. [Google Scholar] [CrossRef]
- Holt, A.; Griffin, P.; Bocharova, V.; Imel, A.; Dadmun, M.; Sangoro, J.; Sokolov, A. Dynamics at the Polymer/Nanoparticle Interface in Poly (2- Vinylpyridine)/Silica Nanocomposites. Macromolecules 2014, 47, 1837–1843. [Google Scholar] [CrossRef]
- Smith, J.S.; Bedrov, D.; Smith, G.D. A Molecular Dynamics Simulation Study of Nanoparticle Interactions in a Model Polymer-Nanoparticle Composite. Compos. Sci. Technol. 2003, 63, 1599–1605. [Google Scholar] [CrossRef]
- Natarajan, B.; Li, Y.; Deng, H.; Brinson, L.; Schadler, L. Effect of Interfacial Energetics on Dispersion and Glass Transition Temperature in Polymer Nanocomposites. Macromolecules 2013, 46, 2833–2841. [Google Scholar] [CrossRef]
- Fu, Y.; Michopoulos, J.; Song, J.H. Dynamics Response of Polyethylene Polymer Nanocomposites to Shock Wave Loading. J. Polym. Sci. Part. B Polym. Phys. 2015, 53, 1292–1302. [Google Scholar] [CrossRef]
- Krutyeva, M.; Pasini, S.; Monkenbusch, M.; Allgaier, J.; Maiz, J.; Mijangos, C.; Hartmann-Azanza, B.; Steinhart, M.; Jalarvo, N.; Richter, D. Polymer Dynamics under Cylindrical Confinement Featuring a Locally Repulsive Surface: A Quasielastic Neutron Scattering Study. J. Chem. Phys. 2017, 146, 203–306. [Google Scholar] [CrossRef] [PubMed]
- Krutyeva, M.; Wischnewski, A.; Monkenbusch, M.; Willner, L.; Maiz, J.; Mijangos, C.; Arbe, A.; Colmenero, J.; Radulescu, A.; Holderer, O.; et al. Effect of Nanoconfinement on Polymer Dynamics: Surface Layers and Interphases. Phys. Rev. Lett. 2013, 110, 108–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, B.; Bocharova, V.; Carrillo, J.-M.Y.; Kisliuk, A.; Cheng, S.; Yamamoto, U.; Schweizer, K.S.; Sumpter, B.G.; Sokolov, A.P. Diffusion of Sticky Nanoparticles in a Polymer Melt: Crossover from Suppressed to Enhanced Transport. Macromolecules 2018, 51, 2268–2275. [Google Scholar] [CrossRef]
- Miller, C.C. The Stokes-Einstein Law for Diffusion in Solution. Phys. Character 1924, 106, 724–749. [Google Scholar]
- Nishi, M.; Sakai, Y.; Akutsu, H.; Nagashima, Y.; Quinn, G.; Masui, S.; Kimura, H.; Perrem, K.; Umezawa, A.; Yamamoto, N.; et al. Induction of Cells with Cancer Stem Cell Properties from Nontumorigenic Human Mammary Epithelial Cells by Defined Reprogramming Factors. Oncogene 2014, 33, 643–652. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, U.M.; Han, L.; Saito, T.; Schweizer, K.S.; Dadmun, M.D. Mechanism of Soft Nanoparticle Diffusion in Entangled Polymer Melts. Macromolecules 2020, 53, 7580–7589. [Google Scholar] [CrossRef]
- Volgin, I.V.; Larin, S.V.; Lyulin, S.V. Diffusion of Nanoparticles in Polymer Systems. Polym. Sci. 2018, 60, 122–134. [Google Scholar] [CrossRef]
- Grabowski, C.; Mukhopadhyay, A. Size Effect of Nanoparticle Diffusion in a Polymer Melt. Macromolecules 2014, 47, 7238–7242. [Google Scholar] [CrossRef]
- Sebastião, P.J.; Monteiro, M.; Brito, L.M.; Rodrigues, E.; Chavez, F.V.; Tavares, M.I.B. Conventional and Fast Field Cycling Relaxometry Study of the Molecular Dynamics in Polymer Nanocomposites for Use as Drug Delivery Systems. J. Nanosci. Nanotechnol. 2016, 16, 7539. [Google Scholar] [CrossRef]
- Senses, E.; Ansar, S.M.; Kitchens, C.L.; Mao, Y.; Narayanan, S.; Natarajan, B.; Faraone, A. Small Particle Driven Chain Disentanglements in Polymer Nanocomposites. Phys. Rev. Lett. 2017, 118, 147–801. [Google Scholar] [CrossRef] [Green Version]
- Mangal, R.; Srivastava, S.; Narayanan, S.; Archer, L.A. Size-Dependent Particle Dynamics in Entangled Polymer Nanocomposites. Langmuir 2016, 32, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, R.A.; Thiyagarajan, P.; Lewis, S.; Bansal, A.; Schadler, L.S.; Lurio, L.B. Dynamics and Internal Stress at the Nanoscale Related to Unique Thermomechanical Behavior in Polymer Nanocomposites. Phys. Rev. Lett. 2006, 97, 75505. [Google Scholar] [CrossRef]
- Hoshino, T.; Murakami, D.; Tanaka, Y.; Takata, M.; Jinnai, H.; Takahara, A. Dynamical Crossover between Hyperdiffusion and Subdiffusion of Polymer-Grafted Nanoparticles in a Polymer Matrix. Phys. Rev. E 2013, 88, 32602. [Google Scholar] [CrossRef]
- Dierker, S.B.; Pindak, R.; Fleming, R.M.; Robinson, I.K.; Berman, L. X-ray photon correlation spectroscopy study of brownian motion of gold colloids in glycerol. Phys. Rev. Lett. 1995, 75, 449–452. [Google Scholar] [CrossRef] [Green Version]
- Anbusagar, N.R.R.; Palanikumar, K.; Ponshanmugakumar, A. Preparation and Properties of Nanopolymer Advanced Composites: A Review; Elsevier BV: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Kickelbick, G. Concepts for the Incorporation of Inorganic Building Blocks into Organic Polymers on a Nanoscale. Prog. Polym. Sci. 2003, 28, 83–114. [Google Scholar] [CrossRef]
- Gopi, S.; Balakrishnan, P.; Sreekala, M.S.; Pius, A.; Thomas, S. Green Materials for Aerospace Industries. Biocomposites 2017, 307–318. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Kaushik, A. Biomedical Applications of Nanotechnology and Nanomaterials. Micromachines 2017, 8, 298. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.; Tirumali, M.; Wang, X.; Naebe, M.; Kandasubramanian, B. Polymer Composite for Antistatic Application in Aerospace. Def. Technol. 2020, 16, 107–118. [Google Scholar] [CrossRef]
- Camargo, P.H.C.; Satyanarayana, K.G.; Wypych, F. Nanocomposites: Synthesis, Structure, Properties and New Application Opportunities. Mater. Res. 2009, 12, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Petkov, P.; Plamen, K.; Tsiulyanu, D.; Popov, C.; Kulisch, W. Advanced Nanotechnologies for Detection and Defence against CBRN Agents; Springer: Cham, Switzerland, 2017; pp. 14–512. [Google Scholar]
- Hussain, F.; Hojjati, M.; Okamoto, M.; Gorga, R.E. Review Article: Polymer-Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview. J. Compos. Mater. 2006, 40, 1511–1575. [Google Scholar] [CrossRef]
- Lin, C.-C.; Parrish, E.; Composto, R.J. Macromolecule and Particle Dynamics in Confined Media. Macromolecules 2016, 49, 5755–5772. [Google Scholar] [CrossRef]
- Chen, J.; Liu, B.; Gao, X.; Xu, D. A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Adv. 2018, 8, 28048–28085. [Google Scholar] [CrossRef] [Green Version]
- Caló, E.; Khutoryanskiy, V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 252–267. [Google Scholar] [CrossRef] [Green Version]
- Ayyala, D.; Blake, D.A.; John, V.T.; Ayyala, R.S. A glaucoma drainage device incorporating a slow-release drug delivery system for the management of fibrosis. Biomaterials 2016, 349–367. [Google Scholar] [CrossRef]
- Yang, L.; Chen, P. Polymeric composite membranes and biomimetic affinity ligands for bioseparation and immunoadsorption. Mol. Interfacial Phenom. Polym. Biopolym. 1991, 609–671. [Google Scholar] [CrossRef]
- Mishnaevsky, L. Micromechanical Modelling of Wind Turbine Blade Materials; Woodhead Publishing Ltd.: Sawston, UK, 2013; pp. 298–324. [Google Scholar] [CrossRef]
- Krolow, M.Z.; Hartwig, C.A.; Link, G.C.; Raubach, C.; Pereira, J.S.F.; Picoloto, R.S.; Gonçalves, M.R.F.; Carreño, N.L.V.; Mesko, M.F. Synthesis and characterisation of carbon nanocomposites. Carbon Nanostructures 2013, 33–47. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Kostopoulou, A.; LaGrow, A. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. Adv. Sci. 2021. [Google Scholar] [CrossRef] [PubMed]
- Sanidaa, A.; Stavropoulosa, S.G.; Speliotisb, T.; Psarras, G.S. Magnetic nanoparticles—Polymer matrix nanodielectrics: Manufacturing, characterization and functionality. Mater. Today Proc. 2018, 27491–27499. [Google Scholar] [CrossRef]
- Sommertune, J.; Sugunan, A.; Ahniyaz, A.; Stjernberg, R.; Sarwe, A.; Johansson, C.; Balceris, C.; Ludwig, F.; Posth, O.; Fornara, A. Polymer/Iron Oxide Nanoparticle Composites—A Straight Forward and Scalable Synthesis Approach. J. Mol. Sci. 2015, 16, 19752–19768. [Google Scholar] [CrossRef] [Green Version]
- Harito, C.; Bavykin, D.V.; Yuliarto, B.; Dipojono, H.K.; Walsh, F.C. Polymer Nanocomposites Having a High Filler Content: Synthesis, Structures, Properties, and Applications. Nanoscale 2019, 11, 4653–4682. [Google Scholar] [CrossRef]
- Goswami, M.; Sumpter, B.G. Effect of Polymer-Filler Interaction Strengths on the Thermodynamic and Dynamic Properties of Polymer Nanocomposites. J. Chem. Phys. 2009, 130, 134910. [Google Scholar] [CrossRef]
- Feng, J.; Odrobina, E.; Winnik, M.A. Effect of Hard Polymer Filler Particles on Polymer Diffusion in a Low-Tg Latex Film. Macromolecules 1998, 31, 5290–5299. [Google Scholar] [CrossRef]
- Wolf, C.; Angellier-Coussy, H.; Gontard, N.; Doghieri, F.; Guillard, V. How the Shape of Fillers Affects the Barrier Properties of Polymer/Non-Porous Particles Nanocomposites: A Review. J. Memb. Sci. 2018, 556, 393–418. [Google Scholar] [CrossRef]
- Fresco, B.; Gálvez, A.; Cárdenas, S. Preparation, characterization and evaluation of hydrophilic polymers containing magnetic nanoparticles and amine-modified carbon nanotubes for the determination of anti-inflammatory drugs in urine samples. Talanta 2020, 121–124. [Google Scholar] [CrossRef]
- Fresco, B.; López, A.; Soriano, M.; Lucena, R.; Cárdenas, S. Recent Nanomaterials-Based Separation Processes. Handb. Smart Mater. Anal. Chem. 2019. [Google Scholar] [CrossRef]
- Reyes, E.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Polymer–nanoparticles composites in bioanalytical sample preparation. Future Sci. 2015. [Google Scholar] [CrossRef]
- Neamtu, M.; Nadejde, C.; Dan Hodoroaba, V.; Schneider, R.; Verestiuc, L.; Panne, U. Functionalized magnetic nanoparticles: Synthesis, characterization, catalytic application and assessment of toxicity. Sci. Rep. 2018, 8, 6278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keçili, R.; Büyüktiryaki, S.; Dolak, İ.; Hussain, C.M. The use of magnetic nanoparticles in sample preparation devices and tools. Handb. Nanomater. Anal. Chem. 2020, 75–95. [Google Scholar] [CrossRef]
- Ravichandran, M.; Jagadale, P.; Velumani, S. Inorganic nanoflotillas as engineered particles for drug and gene delivery. Eng. Nanobiomater. 2016, 429–484. [Google Scholar] [CrossRef]
- Slimani, Y.; Hannachi, E. Magnetic nanosensors and their potential applications. Micro. Nano Technol. 2020, 143–155. [Google Scholar] [CrossRef]
- Mourino, M.R. From Thales to Lauterbur, or from the lodestone to MR imaging: Magnetism and medicine. Radiology 1991, 180, 593–612. [Google Scholar] [CrossRef] [PubMed]
- Kalia, S.; Kango, S.; Kumar, A.; Haldorai, Y.; Kumari, B.; Kumar, R. Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym. Sci. 2014, 2025–2052. [Google Scholar] [CrossRef]
- Petcharoen, K.; Sirivat, A. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B 2012, 177, 421–427. [Google Scholar] [CrossRef]
- Cai, W.; Wan, J. Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J. Colloid Interface Sci. 2007, 305, 366–370. [Google Scholar] [CrossRef]
- Ge, S.; Shi, X.; Sun, K.; Li, C.; Uher, C.; James, R.; Baker, J.; Holl, M.M.B.; Orr, B.G. Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties. J. Phys. Chem. C 2009, 113, 13593–13599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassenberger, A.; Grünewald, T.A.; van Oostrum, P.D.J.; Rennhofer, H.; Amenitsch, H.; Zirbs, R.; Lichtenegger, H.C.; Reimhult, E. Monodisperse Iron Oxide Nanoparticles by Thermal Decomposition: Elucidating Particle Formation by Second-Resolved in Situ Small-Angle X-ray Scattering. Chem. Mater. 2017, 29, 4511–4522. [Google Scholar] [CrossRef] [Green Version]
- Pérez, J.A.L.; Quintela, M.A.L.; And, J.M.; Rivas, J.; Charles, S.W. Advances in the Preparation of Magnetic Nanoparticles by the Microemulsion Method. J. Phys. Chem. B 1997, 101, 8045–8047. [Google Scholar] [CrossRef]
- Xu, J.; Yang, H.; Fu, W.; Du, K.; Sui, Y.; Chen, J.; Zeng, Y.; Li, M.; Zou, G. Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J. Magn. Magn. Mater. 2007, 309, 307–311. [Google Scholar] [CrossRef]
- Cruz, I.F.; Freire, C.; Araújo, J.P.; Pereira, C.; Pereira, A.M. Multifunctional ferrite nanoparticles: From current trends toward the future. In Magnetic Nanostructured Materials: From Lab to Fab; Elsevier: Amsterdam, The Netherlands, 2018; pp. 59–116. [Google Scholar]
- Wu, W.; He, Q.; Jiang, C. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Res. Lett. 2008, 3, 397. [Google Scholar] [CrossRef] [Green Version]
- Cui, Z.F.; Sun, D.H. Synthesis and Characterization of Magnetic NiFe2O4 Nanosheets. Adv. Mater. Res. 2019, 239, 242. [Google Scholar] [CrossRef]
- Cao, X.; Gu, I.; Mukhtar, A.; Wu, K. Magnetic nanowires in biomedical applications. Nanotechnology 2020, 31, 433001. [Google Scholar] [CrossRef]
- Ivanov, Y.; Alfadhel, A.; Alnassar, M.; Perez, J.; Vazquez, M.; Chuvilin, A.; Kosel, J. Tunable magnetic nanowires for biomedical and harsh environment applications. Sci. Rep. 2016, 6, 24189. [Google Scholar] [CrossRef] [Green Version]
- Alsharif, N.; Aleisa, F.; Liu, G.; Ooi, B.; Patel, N.; Ravasi, T.; Merzaban, J.; Kosel, J. Functionalization of Magnetic Nanowires for Active Targeting and Enhanced Cell-Killing Efficacy. ACS Appl. Bio Mater. 2020, 3, 4789–4797. [Google Scholar] [CrossRef]
- Nemati, Z.; Zamani Kouhpanji, M.R.; Zhou, F.; Das, R.; Makielski, K.; Um, J.; Phan, M.-H.; Muela, A.; Fdez-Gubieda, M.L.; Franklin, R.R.; et al. Isolation of Cancer-Derived Exosomes Using a Variety of Magnetic Nanostructures: From Fe3O4 Nanoparticles to Ni Nanowires. Nanomaterials 2020, 10, 1662. [Google Scholar] [CrossRef]
- Nemati, Z.; Um, J.; Zamani, M.; Zhou, F.; Gage, T.; Shore, D.; Makielski, K.; Donnelly, A.; Alonso, J. Magnetic Isolation of Cancer-Derived Exosomes Using Fe/Au Magnetic Nanowires. ACS Appl. Nano Mater. 2020, 3, 2058–2069. [Google Scholar] [CrossRef]
- Zamani Kouhpanji, M.R.; Stadler, B.J.H. Magnetic nanowires for quantitative detection of biopolymers. AIP Adv. 2020, 10, 125231. [Google Scholar] [CrossRef]
- Muthuraman., A.; Kaur, J. Muthuraman. A.; Kaur, J. Antimicrobial Nanostructures for Neurodegenerative Infections: Present and Future Perspectives. Micro. Nano Technol. 2017, 139–167. [Google Scholar] [CrossRef]
- Saitou, N.; Hirano, Y.; Sawada, M.; Namatame, H.; Taniguchi, M.; Taniguchi, T.; Matsumoto, Y.; Hara, M. Magnetic Proximity Effects between Single-Layer Mn-Doped Titania Nanosheets and Fe Overlayers. J. Phys. Soc. Jpn. 2016, 85, 035002. [Google Scholar] [CrossRef]
- Saber, O.; Mohamed, N.; Aljaafari, A. Synthesis of Magnetic Nanoparticles and Nanosheets for Oil Spill Removal. Nanosci. Nanotechnol.-Asia 2015, 5, 32–43. [Google Scholar] [CrossRef]
- Magnani, N. Ferromagnetism. Encycl. Condens. Matter Phys. 2005, 201–210. [Google Scholar] [CrossRef]
- Rochette, P.; Weiss, B.; Gattaccec, J. Magnetism of Extraterrestrial Materials. Elements 2009, 5, 223–228. [Google Scholar] [CrossRef]
- Moskowitz, B.M.; Chandler, J. Geophysical Properties of the Near-Surface Earth: Magnetic Properties. Treatise Geophys. 2015, 11, 139–174. [Google Scholar] [CrossRef]
- Spain, E.; Venkatanarayanan, A. Review of Physical Principles of Sensing and Types of Sensing Materials. Compr. Mater. Process. 2014, 5–46. [Google Scholar] [CrossRef]
- Khan, H.R. Ferromagnetism. Encycl. Phys. Sci. Technol. 2003, 759–768. [Google Scholar] [CrossRef]
- Knobel, M.; Nunes, W.; Socolovsky, L.; De Biasi, E.; Vargas, J.; Denardin, J. Superparamagnetism and Other Magnetic Features in Granular Material. J. Nanosci. Nanotechnol. 2008, 8, 2836–2857. [Google Scholar] [CrossRef]
- Marghussian, V. Magnetic Properties of Nano-Glass Ceramics. Marghussian 2015, 181–223. [Google Scholar] [CrossRef]
- Enriquez-Navas, P.M.; Garcia-Martin, M.L. Application of Inorganic Nanoparticles for Diagnosis Based on MRI. Nanobiotechnology 2012, 233–245. [Google Scholar] [CrossRef]
- Kudr, J.; Haddad, Y.; Richtera, L.; Heger, Z.; Cernak, M.; Adam, V.; Zitka, O. Magnetic Nanoparticles: From Design and Synthesis to Real World Applications. Nanomaterials 2017, 7, 243. [Google Scholar] [CrossRef] [PubMed]
- Clemons, T.D.; Kerr, R.H.; Joos, A. Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications. Biol. Nanosci. 2019, 193–210. [Google Scholar] [CrossRef]
- Majumder, D.D.; Karan, S. Magnetic properties of ceramic nanocomposites. Ceramic Nanocomposites 2013, 51–91. [Google Scholar] [CrossRef]
- Hu, B.; He, M.; Chen, B. 9—Magnetic nanoparticle sorbents. Handb. Sep. Sci. 2020, 235–284. [Google Scholar] [CrossRef]
- Manikandan, A.; Judith Vijaya, J.; John Kennedy, L.; Bououdina, M. Microwave combustion synthesis, structural, optical and magnetic properties of Zn1-xSrxFe2O4 nanoparticles. Ceram. Int. 2013, 39, 5909–5917. [Google Scholar] [CrossRef]
- Powar, R.R.; Phadtare, V.D.; Parale, V.G.; Pathak, S.; Sanadi, K.R.; Park, H.H.; Patil, D.R.; Piste, P.B.; Zambare, D.N. Effect of zinc substitution on magnesium ferrite nanoparticles: Structural, electrical, magnetic, and gas-sensing properties. Mater. Sci. Eng. B 2020, 262, 114776. [Google Scholar] [CrossRef]
- deOliveira, R.C.; Ribeiro, R.A.P.; Cruvinel, G.H.; Amoresi, R.A.C.; Carvalho, M.H.; de Oliveira, A.J.A.; de Oliveira, M.C.; de Lazaro, S.R.; da Silva, L.F.; Catto, A.C.; et al. Role of Surfaces in the Magnetic and Ozone Gas-Sensing Properties of ZnFe2O4 Nanoparticles: Theoretical and Experimental Insights. ACS Appl. Mater. Interfaces 2021, 13, 4605–4617. [Google Scholar] [CrossRef]
- Lima, E.; De Biasi, E.; Zysler, R.D.; Mansilla, M.V.; Mojica-Pisciotti, M.L.; Torres, T.E.; Calatayud, M.P.; Marquina, C.; Ibarra, M.R.; Goya, G. Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia. J. Nanoparticle Res. 2014, 16, 2791. [Google Scholar] [CrossRef]
- Barrera, G.; Tiberto, P.; Allia, P.; Bonelli, B.; Esposito, S.; Marocco, A.; Pansini, M.; Leterrier, Y. Magnetic Properties of Nanocomposites. Appl. Sci. 2019, 9, 212. [Google Scholar] [CrossRef] [Green Version]
- Hasanzadeh, R.; Moghadam, P.; Bahri, N.; Zare, E. Sulfonated Magnetic Nanocomposite Based on Reactive PGMA-MAn Copolymer@Fe3O4 Nanoparticles: Effective Removal of Cu (II) Ions from Aqueous Solutions. Int. J. Polym. Sci. 2016. [Google Scholar] [CrossRef] [Green Version]
- Prabha, G.; Raj, V. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications. J. Magn. Magn. Mater. 2016, 408, 26–34. [Google Scholar] [CrossRef]
- Behrens, S.; Appel, I. Magnetic nanocomposites. Curr. Opin. Biotechnol. 2016, 89–96. [Google Scholar] [CrossRef]
- Gao, Y.; Wei, Z.; Li, F.; Mao, Z.; Mei, Y.; Zrinyib, M.; Osada, Y. Synthesis of a morphology controllable Fe3O4 nanoparticle/hydrogel magnetic nanocomposite inspired by magnetotactic bacteria and its application in H2O2 detection. Green Chem. 2014, 16, 1255–1261. [Google Scholar] [CrossRef]
- Burke, N.; Stöver, H.; Dawson, F. Magnetic Nanocomposites: Preparation and Characterization of Polymer-Coated Iron Nanoparticles. Chem. Mater. 2002, 14, 4752–4761. [Google Scholar] [CrossRef]
- Wangab, O.; Qina, Y.; Jiaa, F.; Lib, Y.; Song, S. Magnetic MoS2 nanosheets as recyclable solar-absorbers for high-performance solar steam generation. Renew. Energy 2021, 163. [Google Scholar] [CrossRef]
- Ilg, P. Stimuli-responsive hydrogels cross-linked by magnetic nanoparticles. Soft Matter 2013, 9, 3465–3468. [Google Scholar] [CrossRef] [Green Version]
- Barbucci, R.; Giani, G.; Fedi, S.; Bottari, S.; Casolarodoi, M. Biohydrogels with magnetic nanoparticles as crosslinker: Characteristics and potential use for controlled antitumor drug-delivery. Acta Biomater. 2012, 8, 4244–4252. [Google Scholar] [CrossRef] [PubMed]
- Malekzad, H.; Zangabad, P.S.; Mirshekari, H.; Karimi, M.; Hamblin, M.R. Noble metal nanoparticles in biosensors: Recent studies and applications. Nanotechnol. Rev. 2017, 6, 301–329. [Google Scholar] [CrossRef] [PubMed]
- de la Higuera, P.G.; Pelaz, B.; Polo, E.; Grazú, V.; Fuente, J.M.; Parro-García, V. Biosensor con Nanoparticulas Metálicas; DIGITAL.CSIC: Madrid, Spain, 2014. [Google Scholar]
- Kerman, K.; Saito, M.; Tamiya, E.; Yamamura, S.; Takamura, Y. Nanomaterial-based electrochemical biosensors for medical applications. TrAC Trends Anal. Chem. 2008, 7, 585–592. [Google Scholar] [CrossRef]
- Gerard, M.; Chaubey, A.; Malhotra, B.D. Application of conducting polymers to biosensors. Biosens. Bioelectron. 2002, 17, 345–359. [Google Scholar] [CrossRef]
- Pakapongpan, S.; Poo-Arporn, R.P. Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor. Mater. Sci. Eng. C 2017, 76, 398–405. [Google Scholar] [CrossRef]
- Prakash, S.; Chakrabarty, T.; Singh, A.K.; Shahi, V.K. Polymer thin films embedded with metal nanoparticles for electrochemical biosensors applications. Biosens. Bioelectron. 2013, 41, 43–53. [Google Scholar] [CrossRef]
- Malik, P.; Katyal, V.; Malik, V.; Asatkar, A.; Inwati, G.; Mukherjee, T.K. Nanobiosensors: Concepts and Variations. Int. Sch. Res. Not. 2013, 2013, 327435. [Google Scholar] [CrossRef]
- Kumar, H.; Kumari, N.; Sharma, R. Nanocomposites (conducting polymer and nanoparticles) based electrochemical biosensor for the detection of environment pollutant: Its issues and challenges. Environ. Impact Assess. Rev. 2020, 85, 106–438. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, Y.; Huang, J.; Li, K.; Xian, Y.; Zhang, W.; Jin, L. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms. Electrochim. Acta 2009, 54, 2588–2594. [Google Scholar] [CrossRef]
- Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 2020, 10, 1403. [Google Scholar] [CrossRef]
- Saini, R.K.; Bagri, L.P.; Bajpai, A.K.; Mishra, A. Responsive polymer nanoparticles for drug delivery applications. Stimuli Responsive Polym. Nanocarriers Drug Deliv. Appl. 2018, 1, 289–320. [Google Scholar] [CrossRef]
- Bennet, D.; Kim, S. Polymer Nanoparticles for Smart Drug Delivery; IntechOpen: London, UK, 2014. [Google Scholar]
- Bustamante-Torres, M.; Pino-Ramos, V.; Romero-Fierro, D.; Hidalgo-Bonilla, S.P.; Magaña, H.; Bucio, E. Synthesis and Antimicrobial properties of Highly Cross-linked pH-sensitive Hydrogels through Gamma Radiation. Polymers 2021, 13, 2223. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Amini-Fazl, M.S.; Mohammadi, R.; Kheiri, K. 5-Fluorouracil loaded chitosan/polyacrylic acid/Fe 3 O 4 magnetic nanocomposite hydrogel as a potential anticancer drug delivery system. Int. J. Biol. Macromol. 2019, 132, 506–513. [Google Scholar] [CrossRef]
- Xie, J.; Lee, S.; Chen, X. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 2010, 62, 1064–1079. [Google Scholar] [CrossRef] [Green Version]
- Hapuarachchige, S.; Artemov, D. Theranostic Pretargeting Drug Delivery and Imaging Platforms in Cancer Precision Medicine. Front. Oncol. 2020, 10, 1131. [Google Scholar] [CrossRef]
- Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 2015, 16, 023501. [Google Scholar] [CrossRef]
- Ho, D.; Sun, X.; Sun, S. Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res. 2011, 44, 875–882. [Google Scholar] [CrossRef] [Green Version]
- Angelakeris, M. Magnetic nanoparticles: A multifunctional vehicle for modern theranostics. Biochim. Biophys. Acta-Gen. Subj. 2017, 1861, 1642–1651. [Google Scholar] [CrossRef]
- Barry, S.E. Challenges in the development of magnetic particles for therapeutic applications. J. Hyperth. 2008, 24, 451–466. [Google Scholar] [CrossRef]
- Onaciu, A.; Jurj, A.; Moldovan, C.; Berindan-Neagoe, I. Theranostic nanoparticles and their spectrum in cancer. In Engineered Nanomaterials: Health and Safety; IntechOpen: London, UK, 2019; Chapter 7. [Google Scholar]
- Muthu, M.S.; Leong, D.T.; Mei, L.; Feng, S.S. Nanotheranostics—Application and further development of nanomedicine strategies for advanced theranostics. Theranostics 2014, 4, 660–677. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, B.; Aswathy, R.G.; Nagaoka, Y.; Suzuki, M.; Fukuda, T.; Yoshida, Y.; Maekawa, T.; Sakthikumar, D.N. Multifunctional carboxymethyl cellulose-based magnetic nanovector as a theragnostic system for folate receptor targeted chemotherapy, imaging, and hyperthermia against cancer. Langmuir 2013, 29, 3453–3466. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, J.R.; Weissleder, R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 2008, 60, 1241–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, K.M. Biomedical nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans. Magn. 2010, 46, 2523–2558. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Lee, J.S.H.; Zhang, M. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 2008, 60, 1252–1265. [Google Scholar] [CrossRef] [Green Version]
- Thorek, D.L.J.; Chen, A.K.; Czupryna, J.; Tsourkas, A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann. Biomed. Eng. 2006, 34, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Yang, M.; Duan, Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem. Rev. 2014, 114, 6130–6178. [Google Scholar] [CrossRef]
- Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 2016, 11, 673–692. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Gunn, J.; Dave, S.R.; Zhang, M.; Wang, Y.A.; Gao, X. Ultrasensitive detection and molecular imaging with magnetic nanoparticles. Analyst 2008, 133, 154–160. [Google Scholar] [CrossRef]
- Semelka, R.C.; Helmberger, T.K.G. State of the art: Contrast agents for MR imaging of the liver. Radiology 2001, 218, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Harisinghani, M.G.; Barentsz, J.; Hahn, P.F.; Deserno, W.M.; Tabatabaei, S.; van de Kaa, C.H.; de la Rosette, J.; Weissleder, R. Noninvasive Detection of Clinically Occult Lymph-Node Metastases in Prostate Cancer. N. Engl. J. Med. 2003, 348, 2491–2499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuwelt, E.A.; Várallyay, P.; Bagó, A.G.; Muldoon, L.L.; Nesbit, G.; Nixon, R. Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours. Neuropathol. Appl. Neurobiol. 2004, 30, 456–471. [Google Scholar] [CrossRef] [PubMed]
- Khemtong, C.; Kessinger, C.W.; Gao, J. Polymeric nanomedicine for cancer MR imaging and drug delivery. Chem. Commun. 2009, 3497–3510. Available online: https://pubs.rsc.org/en/content/articlehtml/2009/cc/b821865j (accessed on 16 December 2020). [CrossRef] [PubMed]
- Xu, H.; Cheng, L.; Wang, C.; Ma, X.; Li, Y.; Liu, Z. Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 2011, 32, 9364–9373. [Google Scholar] [CrossRef]
- Kumari, B.; Singh, D.P. A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecol. Eng. 2016, 97, 98–105. [Google Scholar] [CrossRef]
- Chávez-Lizárraga, G.A. Nanotecnología una alternativa para el tratamiento de aguas residuales: Avances, Ventajas y Desventajas. J. Selva Andin. Res. Soc. 2018, 9, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Qiang, Y.; Sharma, A.; Paszczynski, A.; Meyer, D. Conjugates of Magnetic Nanoparticle-Enzyme for Bioremediation; CRC Press: Boca Raton, FL, USA, 2007; pp. 1–4. [Google Scholar] [CrossRef]
- Kumar, V.V.; Sivanesan, S.; Cabana, H. Magnetic cross-linked laccase aggregates—Bioremediation tool for decolorization of distinct classes of recalcitrant dyes. Sci. Total Environ. 2014, 487, 830–839. [Google Scholar] [CrossRef] [PubMed]
- Daumann, L.J.; Larrabee, J.A.; Ollis, D.; Schenk, G.; Gahan, L.R. Immobilization of the enzyme GpdQ on magnetite nanoparticles for organophosphate pesticide bioremediation. J. Inorg. Biochem. 2014, 131, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Zhou, Z.; Dong, Y.; Wang, B.; Jiang, J.; Guan, X.; Gao, S.; Yang, A.; Chen, Z.; Sun, H. Bioremediation of Petrochemical Wastewater Containing BTEX Compounds by a New Immobilized Bacterium Comamonas sp. JB in Magnetic Gellan Gum. Appl. Biochem. Biotechnol. 2015, 176, 572–581. [Google Scholar] [CrossRef]
- Pavía-Sanders, A.; Zhang, S.; Flores, J.A.; Sanders, J.E.; Raymond, J.E.; Wooley, K.L. Robust magnetic/polymer hybrid nanoparticles designed for crude oil entrapment and recovery in aqueous environments. ACS Nano 2013, 7, 7552–7561. [Google Scholar] [CrossRef]
- Mirzaee, E.; Gitipour, S.; Mousavi, M.; Amini, S. Optimization of total petroleum hydrocarbons removal from Mahshahr contaminated soil using magnetite nanoparticle catalyzed Fenton-like oxidation. Environ. Earth Sci. 2017, 76, 1–13. [Google Scholar] [CrossRef]
- Nador, F.; Moglie, Y.; Vitale, C.; Yus, M.; Alonso, F.; Radivoy, G. Reduction of polycyclic aromatic hydrocarbons promoted by cobalt or manganese nanoparticles. Tetrahedron 2010, 66, 4318–4325. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Zeng, G.; Liu, J.; Xu, X.; Zhang, Y.; Shen, G.; Li, Y.; Liu, C. Catechol determination in compost bioremediation using a laccase sensor and artificial neural networks. Anal. Bioanal. Chem. 2008, 391, 679–685. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustamante-Torres, M.; Romero-Fierro, D.; Arcentales-Vera, B.; Pardo, S.; Bucio, E. Interaction between Filler and Polymeric Matrix in Nanocomposites: Magnetic Approach and Applications. Polymers 2021, 13, 2998. https://doi.org/10.3390/polym13172998
Bustamante-Torres M, Romero-Fierro D, Arcentales-Vera B, Pardo S, Bucio E. Interaction between Filler and Polymeric Matrix in Nanocomposites: Magnetic Approach and Applications. Polymers. 2021; 13(17):2998. https://doi.org/10.3390/polym13172998
Chicago/Turabian StyleBustamante-Torres, Moises, David Romero-Fierro, Belén Arcentales-Vera, Samantha Pardo, and Emilio Bucio. 2021. "Interaction between Filler and Polymeric Matrix in Nanocomposites: Magnetic Approach and Applications" Polymers 13, no. 17: 2998. https://doi.org/10.3390/polym13172998
APA StyleBustamante-Torres, M., Romero-Fierro, D., Arcentales-Vera, B., Pardo, S., & Bucio, E. (2021). Interaction between Filler and Polymeric Matrix in Nanocomposites: Magnetic Approach and Applications. Polymers, 13(17), 2998. https://doi.org/10.3390/polym13172998