Polymerization Shrinkage of Short Fiber Reinforced Dental Composite Using a Confocal Laser Analysis
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abouelleil, H.; Pradelle, N.; Villat, C.; Attik, N.; Colon, P.; Grosgogeat, B. Comparison of mechanical properties of a new fiber reinforced composite and bulk filling composites. Restor. Dent. Endod. 2015, 40, 262–270. [Google Scholar] [CrossRef]
- Miura, D.; Miyasaka, T.; Aoki, H.; Aoyagi, Y.; Ishida, Y. Correlations among bending test methods for dental hard resins. Dent. Mater. J. 2017, 36, 491–496. [Google Scholar] [CrossRef]
- Pallesen, U.; van Dijken, J.W. A randomized controlled 27 years follow up of three resin composites in Class II restorations. J. Dent. 2015, 43, 1547–1558. [Google Scholar] [CrossRef]
- Pallesen, U.; van Dijken, J.W. A randomized controlled 30 years follow up of three conventional resin composites in Class II restorations. Dent. Mater. 2015, 31, 1232–1244. [Google Scholar] [CrossRef]
- Darabi, F.; Seyed-Monir, A.; Mihandoust, S.; Maleki, D. The effect of preheating of composite resin on its color stability after immersion in tea and coffee solutions: An in-vitro study. J. Clin. Exp. Dent. 2019, 11, e1151–e1156. [Google Scholar] [CrossRef]
- Ardu, S.; Braut, V.; Di Bella, E.; Lefever, D. Influence of background on natural tooth colour coordinates: An in vivo evaluation. Odontology 2014, 102, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Park, S.H. Evaluation of resin composite translucency by two different methods. Oper. Dent. 2013, 38, E76–E90. [Google Scholar] [CrossRef]
- Jandt, K.D.; Sigusch, B.W. Future perspectives of resin-based dental materials. Dent. Mater. 2009, 25, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. Resin composite—State of the art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Borouziniat, A.; Khaki, H.; Majidinia, S. Retrospective evaluation of the clinical performance of direct composite restorations using the snow-plow technique: Up to 4 years follow-up. J. Clin. Exp. Dent. 2019, 11, e964–e968. [Google Scholar] [CrossRef]
- Maktabi, H.; Ibrahim, M.; Alkhubaizi, Q.; Weir, M.; Xu, H.; Strassler, H.; Fugolin, A.P.P.; Pfeifer, C.S.; Melo, M.A.S. Underperforming light curing procedures trigger detrimental irradiance-dependent biofilm response on incrementally placed dental composites. J. Dent. 2019, 88, 103110. [Google Scholar] [CrossRef] [PubMed]
- Ausiello, P.; Dal Piva, A.M.d.O.; Borges, A.L.S.; Lanzotti, A.; Zamparini, F.; Epifania, E.; Mendes Tribst, J.P. Effect of shrinking and no shrinking dentine and enamel replacing materials in posterior restoration: A 3D-FEA study. Appl. Sci. 2021, 11, 2215. [Google Scholar] [CrossRef]
- Davidson, C.; Feilzer, A.J. Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J. Dent. 1997, 25, 435–440. [Google Scholar] [CrossRef]
- Leprince, J.G.; Palin, W.M.; Hadis, M.A.; Devaux, J.; Leloup, G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent. Mater. 2013, 29, 139–156. [Google Scholar] [CrossRef]
- Asmussen, E.; Peutzfeldt, A. Two-step curing: Influence on conversion and softening of a dental polymer. Dent. Mater. 2003, 19, 466–470. [Google Scholar] [CrossRef]
- Ruddell, D.E.; Maloney, M.M.; Thompson, J.Y. Effect of novel filler particles on the mechanical and wear properties of dental composites. Dent. Mater. 2002, 18, 72–80. [Google Scholar] [CrossRef]
- Miyasaka, T. Effect of shape and size of silanated fillers on mechanical properties of experimental photo cure composite resins. Dent. Mater. J. 1996, 15, 98–110, 249. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Versluis, A.; Douglas, W.H.; Sakaguchi, R.L. Thermal expansion coefficient of dental composites measured with strain gauges. Dent. Mater. 1996, 12, 290–294. [Google Scholar] [CrossRef]
- Al Sunbul, H.; Silikas, N.; Watts, D.C. Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites. Dent. Mater. 2016, 32, 998–1006. [Google Scholar] [CrossRef]
- Kim, R.J.-Y.; Kim, Y.-J.; Choi, N.-S.; Lee, I.-B. Polymerization shrinkage, modulus, and shrinkage stress related to tooth-restoration interfacial debonding in bulk-fill composites. J. Dent. 2015, 43, 430–439. [Google Scholar] [CrossRef]
- Ilie, N.; Jelen, E.; Clementino-Luedemann, T.; Hickel, R. Low-shrinkage composite for dental application. Dent. Mater. J. 2007, 26, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Peutzfeldt, A. Resin composites in dentistry: The monomer systems. Eur. J. Oral Sci. 1997, 105, 97–116. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Um, C.-M.; Lee, I.-B. Rheological properties of resin composites according to variations in monomer and filler composition. Dent. Mater. 2006, 22, 515–526. [Google Scholar] [CrossRef]
- Krause, W.R.; Park, S.H.; Straup, R.A. Mechanical properties of BIS-GMA resin short glass fiber composites. J. Biomed. Mater. Res. 1989, 23, 1195–1211. [Google Scholar] [CrossRef] [PubMed]
- Shouha, P.; Swain, M.; Ellakwa, A. The effect of fiber aspect ratio and volume loading on the flexural properties of flowable dental composite. Dent. Mater. 2014, 30, 1234–1244. [Google Scholar] [CrossRef]
- Lassila, L.; Garoushi, S.; Vallittu, P.K.; Säilynoja, E. Mechanical properties of fiber reinforced restorative composite with two distinguished fiber length distribution. J. Mech. Behav. Biomed. Mater. 2016, 60, 331–338. [Google Scholar] [CrossRef]
- Musanje, L.; Darvell, B.W. Curing-light attenuation in filled-resin restorative materials. Dent. Mater. 2006, 22, 804–817. [Google Scholar] [CrossRef]
- Ferracane, J.; Greener, E.H. The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. J. Biomed. Mater. Res. 1986, 20, 121–131. [Google Scholar] [CrossRef]
- Miyasaka, T.; Okamura, H. Dimensional change measurements of conventional and flowable composite resins using a laser displacement sensor. Dent. Mater. J. 2009, 28, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Kanada, H. Realization of a high accuracy laser displacement meter based on triangulation. Trans. Soc. Instrum. Control. Eng. 1991, 27, 853–860. [Google Scholar] [CrossRef]
- Duan, H.; Morita, S.; Hosobata, T.; Takeda, M.; Yamagata, Y. On-machine measurement system of ultra-precision machine tool using confocal chromatic probe. In The Proceedings of the Manufacturing & Machine Tool Conference; Japan Society of Mechanical Engineers: Tokyo, Japan, 2019; (In Japanese). [Google Scholar] [CrossRef]
- Jang, J.H.; Park, S.H.; Hwang, I.N. Polymerization shrinkage and depth of cure of bulk-fill resin composites and highly filled flowable resin. Oper. Dent. 2015, 40, 172–180. [Google Scholar] [CrossRef]
- Wu, J.; Itoh, K.; Hisamitsu, H.; Wakumoto, S. Effect of cavosurface angle on dentin cavity adaptation of resin composites. Dent. Mater. J. 1999, 18, 295–303. [Google Scholar] [CrossRef][Green Version]
- Garoushi, S.; Säilynoja, E.; Vallittu, P.K.; Lassila, L. Physical properties and depth of cure of a new short fiber reinforced composite. Dent. Mater. 2013, 29, 835–841. [Google Scholar] [CrossRef]
- Nak-Ho, S.; Suh, N.P. Effect of fiber orientation on friction and wear of fiber reinforced polymeric composites. Wear 1979, 53, 129–141. [Google Scholar] [CrossRef]
- Rueggeberg, F.A.; Caughman, W.F.; Curtis, J.W.; Davis, H.C. Factors affecting cure at depths within light-activated resin composites. Am. J. Dent. 1993, 6, 91–95. [Google Scholar]
- Garoushi, S.; Vallittu, P.K.; Lassila, L.V. Depth of cure and surface microhardness of experimental short fiber-reinforced composite. Acta Odontol. Scand. 2008, 66, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Le Bell, A.M.; Tanner, J.; Lassila, L.V.; Kangasniemi, I.; Vallittu, P.K. Depth of light-initiated polymerization of glass fiber-reinforced composite in a simulated root canal. Int. J. Prosthodont. 2003, 16, 403–408. [Google Scholar]
- Watts, D.; Marouf, A.; Al-Hindi, A.M. Photo-polymerization shrinkage-stress kinetics in resin-composites: Methods development. Dent. Mater. 2003, 19, 1–11. [Google Scholar] [CrossRef]
- Stansbury, J.W.; Trujillo-Lemon, M.; Lu, H.; Ding, X.; Lin, Y.; Ge, J. Conversion-dependent shrinkage stress and strain in dental resins and composites. Dent. Mater. 2005, 21, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Stansbury, J.W.; Bowman, C.N. Towards the elucidation of shrinkage stress development and relaxation in dental composites. Dent. Mater. 2004, 20, 979–986. [Google Scholar] [CrossRef]
- Braga, R.R.; Ballester, R.Y.; Ferracane, J.L. Factors involved in the development of polymerization shrinkage stress in resin-composites: A systematic review. Dent. Mater. 2005, 21, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.E.; Park, S.H. Comparison of premolar cuspal deflection in bulk or in incremental composite restoration methods. Oper. Dent. 2011, 36, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Suliman, A.A.; Boyer, D.B.; Lakes, R.S. Cusp movement in premolars resulting from composite polymerization shrinkage. Dent. Mater. 1993, 9, 6–10. [Google Scholar] [CrossRef]
- Ernst, C.-P.; Meyer, G.R.; Klöcker, K.; Willershausen, B. Determination of polymerization shrinkage stress by means of a photoelastic investigation. Dent. Mater. 2004, 20, 313–321. [Google Scholar] [CrossRef]
- Loguercio, A.D.; Reis, A.; Schroeder, M.; Balducci, I.; Versluis, A.; Ballester, R.Y. Polymerization shrinkage: Effects of boundary conditions and filling technique of resin composite restorations. J. Dent. 2004, 32, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.J.; Bicalho, A.A.; Tantbirojn, D.; Versluis, A. Polymerization shrinkage stresses in a premolar restored with different composite resins and different incremental techniques. J. Adhes. Dent. 2013, 15, 341–350. [Google Scholar] [PubMed]
- Ersen, K.A.; Gürbüz, Ö.; Özcan, M. Evaluation of polymerization shrinkage of bulk-fill resin composites using microcomputed tomography. Clin. Oral Investig. 2020, 24, 1687–1693. [Google Scholar] [CrossRef]
Code | Product Name | Base Monomer | Filler | Filler Content (wt%) | Shade | Manufacture |
---|---|---|---|---|---|---|
CF | Clearfil majesty ES Flow | Bis-GMA | Hybrid | 78 | A2 | Kuraray Noritake Dental, Tokyo, Japan |
XD | Ever X Flow (Dentin) | Bis-MEPP TEGDMA UDMA | Glass fibres Barium glass Silicon dioxide | 25 42–52 Trace | Dentin | GC, Tokyo, Japan |
XB | Ever X Flow (Bulk) | Bis-MEPP TEGDMA UDMA | Glass fibres Barium glass Silicon dioxide | 25 42–52 Trace | Bulk Shade | GC, Tokyo, Japan |
XP | EverX Posterior | Bis-GMA TEGDMA | Glass fibres Barium glass Silicon dioxide | 5–15 60–70 1–5 | Universal | GC, Tokyo, Japan |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miura, D.; Ishida, Y.; Shinya, A. Polymerization Shrinkage of Short Fiber Reinforced Dental Composite Using a Confocal Laser Analysis. Polymers 2021, 13, 3088. https://doi.org/10.3390/polym13183088
Miura D, Ishida Y, Shinya A. Polymerization Shrinkage of Short Fiber Reinforced Dental Composite Using a Confocal Laser Analysis. Polymers. 2021; 13(18):3088. https://doi.org/10.3390/polym13183088
Chicago/Turabian StyleMiura, Daisuke, Yoshiki Ishida, and Akikazu Shinya. 2021. "Polymerization Shrinkage of Short Fiber Reinforced Dental Composite Using a Confocal Laser Analysis" Polymers 13, no. 18: 3088. https://doi.org/10.3390/polym13183088
APA StyleMiura, D., Ishida, Y., & Shinya, A. (2021). Polymerization Shrinkage of Short Fiber Reinforced Dental Composite Using a Confocal Laser Analysis. Polymers, 13(18), 3088. https://doi.org/10.3390/polym13183088