Characterization of 3D Printing on Jute Fabrics
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. 3D Printing Fabrication
2.3. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cuan-Urquizo, E.; Barocio, E.; Tejada-Ortigoza, V.; Pipes, R.B.; Rodriguez, C.A.; Roman-Flores, A. Characterization of the mechanical properties of FFF structures and materials: A review on the experimental, computational and theoretical approaches. Materials 2019, 16, 895. [Google Scholar] [CrossRef] [Green Version]
- Ming, Y.; Zhang, S.; Han, W.; Wang, B.; Duan, Y.; Xiao, H. Investigation on process parameters of 3D printed continuous carbon fiber-reinforced thermosetting epoxy composites. Addit. Manuf. 2020, 33, 101184. [Google Scholar] [CrossRef]
- Anderson, I. Mechanical Properties of Specimens 3D Printed with Virgin and Recycled Polylactic Acid. 3D Print. Addit. Manuf. 2017, 4, 110–115. [Google Scholar] [CrossRef]
- Qahtani, M.; Wu, F.; Misra, M.; Gregori, S.; Mielewski, D.F.; Mohanty, A.K. Experimental Design of Sustainable 3D-Printed Poly(Lactic Acid)/Biobased Poly(Butylene Succinate) Blends via Fused Deposition Modeling. ACS Sustain. Chem. Eng. 2019, 7, 14460–14470. [Google Scholar] [CrossRef] [Green Version]
- Prasong, W.; Muanchan, P.; Ishigami, A.; Thumsorn, S.; Kurose, T.; Ito, H. Properties of 3D Printable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends and Nano Talc Composites. J. Nanomater. 2020, 8040517. [Google Scholar] [CrossRef]
- Paspali, A.; Bao, Y.; Gawne, D.T.; Piestert, F.; Reinelt, S. The influence of nanostructure on the mechanical properties of 3D printed polylactide/nanoclay composites. Compos. Part B Eng. 2018, 152, 160–168. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications —A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caminero, M.Á.; Chacón, J.M.; García-Plaza, E.; Núñez, P.J.; Reverte, J.M.; Becar, J.P. Additive manufacturing of PLA-based composites using fused filament fabrication: Effect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture. Polymers 2019, 11, 799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.; Liu, T.; Yang, C.; Wang, Q.; Li, D. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part A Appl. Sci. Manuf. 2016, 88, 198–205. [Google Scholar] [CrossRef]
- Pakkanen, J.; Manfredi, D.; Minetola, P.; Iuliano, L. About the Use of Recycled or Biodegradable Filaments for Sustainability of 3D Printing BT, Sustainable Design and Manufacturing 2017; Campana, G., Howlett, R.J., Setchi, R., Cimatti, B., Eds.; Springer International Publishing: Cham, Switzerland; Heidelberg, Germany, 2017; pp. 776–785. [Google Scholar]
- Blok, L.G.; Longana, M.L.; Yu, H.; Woods, B.K.S. An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit. Manuf. 2018, 22, 176–186. [Google Scholar] [CrossRef]
- Le Duigou, A.; Correa, D.; Ueda, M.; Matsuzaki, R.; Castro, M. A review of 3D and 4D printing of natural fibre biocomposites. Mater. Des. 2020, 194, 108911. [Google Scholar] [CrossRef]
- Sekar, V.; Fouladi, M.H.; Namasivayam, S.N.; Sivanesan, S. Additive Manufacturing: A Novel Method for Developing an Acoustic Panel Made of Natural Fiber-Reinforced Composites with Enhanced Mechanical and Acoustical Properties. J. Eng. 2019. [Google Scholar] [CrossRef] [Green Version]
- Woern, A.L.; Byard, D.J.; Oakley, R.B.; Fiedler, M.J.; Snabes, S.L.; Pearce, J.M. Fused particle fabrication 3-D printing: Recycled materials’ optimization and mechanical properties. Materials 2018, 11, 1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [Green Version]
- Santana, H.A.; Amorim Júnior, N.S.; Ribeiro, D.V.; Cilla, M.S.; Dias, C.M.R. 3D printed mesh reinforced geopolymer: Notched prism bending. Cem. Concr. Compos. 2021, 116, 103892. [Google Scholar] [CrossRef]
- Marchewka, J.; Laska, J. Processing of poly-l-lactide and poly(l-lactide-co-trimethylene carbonate) blends by fused filament fabrication and fused granulate fabrication using RepRap 3D printer. Int. J. Adv. Manuf. Technol. 2020, 106, 4933–4944. [Google Scholar] [CrossRef] [Green Version]
- Fafenrot, S.; Grimmelsmann, N.; Wortmann, M.; Ehrmann, A. Three-dimensional (3D) printing of polymer-metal hybrid materials by fused deposition modeling. Materials 2017, 10, 1199. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Kamma-Lorger, C.S.; Mohan, S.D.; Mateus, A.; Mitchell, G.R. The Exploitation of Polymer Based Nanocomposites for Additive Manufacturing: A Prospective Review; Trans Tech Publications Ltd.: Bäch, Switzerland, 2019; Volume 890, ISBN 1139574620. [Google Scholar]
- Podsiadły, B.; Skalski, A.; Wałpuski, B.; Słoma, M. Heterophase materials for fused filament fabrication of structural electronics. J. Mater. Sci. Mater. Electron. 2019, 30, 1236–1245. [Google Scholar] [CrossRef]
- Salavati, M.; Yousefi, A.A. Polypropylene–clay micro/nanocomposites as fused deposition modeling filament: Effect of polypropylene-g-maleic anhydride and organo-nanoclay as chemical and physical compatibilizers. Iran. Polym. J. 2019, 28, 611–620. [Google Scholar] [CrossRef]
- Herrero, M.; Peng, F.; Núñez Carrero, K.C.; Merino, J.C.; Vogt, B.D. Renewable Nanocomposites for Additive Manufacturing Using Fused Filament Fabrication. ACS Sustain. Chem. Eng. 2018, 6, 12393–12402. [Google Scholar] [CrossRef]
- Aumnate, C.; Limpanart, S.; Soatthiyanon, N.; Khunton, S. PP/organoclay nanocomposites for fused filament fabrication (FFF) 3D printing. Express Polym. Lett. 2019, 13, 898–909. [Google Scholar] [CrossRef]
- Guo, H.; Lv, R.; Bai, S. Recent advances on 3D printing graphene-based composites. Nano Mater. Sci. 2019, 1, 101–115. [Google Scholar] [CrossRef]
- Aumnate, C.; Pongwisuthiruchte, A.; Pattananuwat, P.; Potiyaraj, P. Fabrication of ABS/Graphene Oxide Composite Filament for Fused Filament Fabrication (FFF) 3D Printing. Adv. Mater. Sci. Eng. 2018, 2018, 2830437. [Google Scholar] [CrossRef] [Green Version]
- Gnanasekaran, K.; Heijmans, T.; van Bennekom, S.; Woldhuis, H.; Wijnia, S.; de With, G.; Friedrich, H. 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling. Appl. Mater. Today 2017, 9, 21–28. [Google Scholar] [CrossRef]
- Sodeifian, G.; Ghaseminejad, S.; Yousefi, A.A. Preparation of polypropylene/short glass fiber composite as Fused Deposition Modeling (FDM) filament. Results Phys. 2019, 12, 205–222. [Google Scholar] [CrossRef]
- Spoerk, M.; Savandaiah, C.; Arbeiter, F.; Traxler, G.; Cardon, L.; Holzer, C.; Sapkota, J. Anisotropic properties of oriented short carbon fibre filled polypropylene parts fabricated by extrusion-based additive manufacturing. Compos. Part A Appl. Sci. Manuf. 2018, 113, 95–104. [Google Scholar] [CrossRef]
- Ivey, M.; Melenka, G.W.; Carey, J.P.; Ayranci, C. Characterizing short-fiber-reinforced composites produced using additive manufacturing. Adv. Manuf. Polym. Compos. Sci. 2017, 3, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D printing of polymer matrix composites: A review and prospective. Compos. Part B Eng. 2017, 110, 442–458. [Google Scholar] [CrossRef]
- Matsuzaki, R.; Ueda, M.; Namiki, M.; Jeong, T.K.; Asahara, H.; Horiguchi, K.; Nakamura, T.; Todoroki, A.; Hirano, Y. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef]
- Balla, V.K.; Kate, K.H.; Satyavolu, J.; Singh, P.; Tadimeti, J.G.D. Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Compos. Part B Eng. 2019, 174, 106956. [Google Scholar] [CrossRef]
- Alkbir, M.F.M.; Sapuan, S.M.; Nuraini, A.A.; Ishak, M.R. Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review. Compos. Struct. 2016, 148, 59–73. [Google Scholar] [CrossRef]
- Shekar, H.S.S.; Ramachandra, M. Green Composites: A Review. Mater. Today Proc. 2018, 5, 2518–2526. [Google Scholar] [CrossRef]
- Yan, L.; Kasal, B.; Huang, L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos. Part B Eng. 2016, 92, 94–132. [Google Scholar] [CrossRef]
- Wis, A.A.; Kodal, M.; Ozturk, S.; Ozkoc, G. Overmolded polylactide/jute-mat eco-composites: A new method to enhance the properties of natural fiber biodegradable composites. J. Appl. Polym. Sci. 2020, 137, 48692. [Google Scholar] [CrossRef]
- Jerpdal, L.; Schuette, P.; Ståhlberg, D.; åkermo, M. Influence of temperature during overmolding on the tensile modulus of self-reinforced poly(ethylene terephthalate) insert. J. Appl. Polym. Sci. 2020, 137, 48334. [Google Scholar] [CrossRef]
- Hill, C.A.S.; Norton, A.; Newman, G. The water vapor sorption behavior of natural fibers. J. Appl. Polym. Sci. 2009, 112, 1524–1537. [Google Scholar] [CrossRef]
- Defoirdt, N.; Biswas, S.; De Vriese, L.; Tran, L.Q.N.; Van Acker, J.; Ahsan, Q.; Gorbatikh, L.; Van Vuure, A.; Verpoest, I. Assessment of the tensile properties of coir, bamboo and jute fibre. Compos. Part A Appl. Sci. Manuf. 2010, 41, 588–595. [Google Scholar] [CrossRef] [Green Version]
Reference | Description |
---|---|
PLA | PLA |
PLA/J-M | PLA/jute fiber modified |
PLA/J-R | PLA/jute fiber with flame retardant |
PLA/J-MR | PLA/jute fiber modified and flame retardant |
PLA/J-A | PLA/jute fiber with adhesive |
PLA/J-RA | PLA/jute fiber with flame retardant and adhesive |
Material | E (GPa) | σy (MPa) | σb (MPa) | εb (%) |
---|---|---|---|---|
PLA | 1.98 ± 0.02 | 27.93 ± 1.25 | 25.13 ± 1.16 | 14.76 ± 0.98 |
PLA/J-M | 1.22 ± 0.23 | 18.81 ± 3.76 | 18.24 ± 1.98 | 11.48 ± 1.25 |
PLA/J-R | 1.41 ± 0.13 | 19.84 ± 1.86 | 19.72 ± 1.98 | 7.51 ± 2.68 |
PLA/J-MR | 1.26 ± 0.46 | 21.11 ± 2.33 | 19.41 ± 1.98 | 13.68 ± 1.26 |
PLA/J-A | 1.83 ± 0.19 | 22.97 ± 2.16 | 21.88 ± 1.98 | 11.76 ± 1.89 |
PLA/J-RA | 1.62 ± 0.16 | 21.78 ± 1.89 | 19.76 ± 1.98 | 13.36 ± 1.36 |
Material | Length (mm) | Width (mm) | Thickness (mm) | Burning Distance (mm) | Time of Burning (s) | Rate of Burning (mm/min) |
---|---|---|---|---|---|---|
PLA-1 | 51.3 | 13.23 | 4.77 | 38.1 | 49.55 | 46.14 |
PLA-2 | 50.49 | 13.27 | 4.75 | 38.1 | 41.65 | 54.89 |
PLA-3 | 50.66 | 13.24 | 4.74 | 38.1 | 40.33 | 56.68 |
PLA/J-M-1 | 50.36 | 13.69 | 4.94 | 38.1 | 35.08 | 65.17 |
PLA/J-M-2 | 51.16 | 13.76 | 5.07 | 38.1 | 48.88 | 46.77 |
PLA/J-M-3 | 51.59 | 14.03 | 5.13 | 38.1 | 50.83 | 44.97 |
PLA/J-R-1 | 51.75 | 13.67 | 4.84 | 38.1 | 64.57 | 35.40 |
PLA/J-R-2 | 50.72 | 13.53 | 4.81 | 38.1 | 63.62 | 35.93 |
PLA/J-R-3 | 49.95 | 13.54 | 5.16 | 38.1 | 70.03 | 32.64 |
PLA/J-MR-1 | 51.52 | 13.73 | 5.24 | 38.1 | 67.5 | 33.87 |
PLA/J-MR-2 | 51.7 | 13.41 | 5.11 | 38.1 | 63.29 | 36.12 |
PLA/J-MR-3 | 50.64 | 13.71 | 5.24 | 38.1 | 69.99 | 32.66 |
PLA/J-A-1 | 50.21 | 13.38 | 4.99 | 38.1 | 67.46 | 33.89 |
PLA/J-A-2 | 50.09 | 13.65 | 5.08 | 38.1 | 57.54 | 39.73 |
PLA/J-A-3 | 50.07 | 13.5 | 4.98 | 38.1 | 63.95 | 35.75 |
PLA/J-RA-1 | 50.38 | 13.45 | 5.01 | 38.1 | 62.5 | 36.58 |
PLA/J-RA-2 | 48.16 | 13.39 | 4.97 | 38.1 | 62.21 | 36.75 |
PLA/J-RA-3 | 50.16 | 13.4 | 5.28 | 38.1 | 60.11 | 38.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco-Urquiza, E.A.; Escamilla, Y.R.; Alcántara Llanas, P.I. Characterization of 3D Printing on Jute Fabrics. Polymers 2021, 13, 3202. https://doi.org/10.3390/polym13193202
Franco-Urquiza EA, Escamilla YR, Alcántara Llanas PI. Characterization of 3D Printing on Jute Fabrics. Polymers. 2021; 13(19):3202. https://doi.org/10.3390/polym13193202
Chicago/Turabian StyleFranco-Urquiza, Edgar Adrián, Yael Ramírez Escamilla, and Perla Itzel Alcántara Llanas. 2021. "Characterization of 3D Printing on Jute Fabrics" Polymers 13, no. 19: 3202. https://doi.org/10.3390/polym13193202
APA StyleFranco-Urquiza, E. A., Escamilla, Y. R., & Alcántara Llanas, P. I. (2021). Characterization of 3D Printing on Jute Fabrics. Polymers, 13(19), 3202. https://doi.org/10.3390/polym13193202