Double-Walled Poly-(D,L-lactide-co-glycolide) (PLGA) and Poly(L-lactide) (PLLA) Nanoparticles for the Sustained Release of Doxorubicin
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of PLLA/PLGA Double-Walled Nanoparticles and PLGA Nanoparticles
2.3. Preparation of PLLA/PLGA Double-Walled Microparticles
2.4. Characterization of NP
2.4.1. Surface Morphology
2.4.2. Particles Size and Zeta Potential Analysis
2.4.3. Thermal Analysis by Differential Scanning Calorimetry (DSC)
2.4.4. Drug Encapsulation Efficiency (EE)
2.5. In Vitro DOX Release Studies
2.6. In Vitro Cell Assays
2.6.1. Cell Culture
2.6.2. Cell Viability Assays
- Flow Cytometry
- Absolute number of cells
- Fluorescence microscopy
3. Results and Discussion
3.1. Nanoparticles Characterization
3.2. In Vitro Controlled Drug Release
3.3. Viability Assays
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brannon-Peppas, L.; Blanchette, J.O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 2004, 56, 1649–1659. [Google Scholar] [CrossRef] [PubMed]
- Díaz, M.R.; Vivas-Mejia, P.E. Nanoparticles as Drug Delivery Systems in Cancer Medicine: Emphasis on RNAi-Containing Nanoliposomes. Pharmaceuticals 2013, 6, 1361–1380. [Google Scholar] [CrossRef] [Green Version]
- Fahmy, T.M.; Fong, P.M.; Goyal, A.; Saltzman, W.M. Targeted for drug delivery. Mater. Today 2005, 8, 18–26. [Google Scholar] [CrossRef]
- Cardoso, M.M.; Peça, I.N.; Roque, A.C.A. Antibody-Conjugated Nanoparticles for Therapeutic Applications. Curr. Med. Chem. 2012, 19, 3103–3127. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Ma, G.; Yuan, Z.; Qian, H.; Xu, L.; Sidransk, E.; Chen, S. Development of Zwitterionic Polypeptide Nanoformulation with High Doxorubicin Loading Content for Targeted Drug Delivery. Langmuir 2019, 35, 1273–1283. [Google Scholar] [CrossRef] [PubMed]
- Sabzia, A.; Rahmanib, A.; Edalatic, M.; Kahrobad, H.; Dadpourf, M.R.; Salehia, R.; Zarebkohana, A. Targeted co-delivery of curcumin and doxorubicin by citric acid functionalized Poly (ε-caprolactone) based micelle in MDA-MB-231 cell. Colloids Surf. B Biointerfaces 2020, 194, 111225. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.C.; Lin, R.; Wang, C.H. Fabrication of double-walled microspheres for the sustained release of doxorubicin. J. Colloid Interf. Sci. 2005, 291, 135–143. [Google Scholar] [CrossRef]
- Matsumoto, Y.M.A.; Suzuki, T.; Yoshino, H.; Kobayashi, M. The polymer-alloys method as a new preparation method of biodegradable microspheres: Principle and application to cisplatin-loaded microspheres. J. Control. Release 1997, 48, 19–27. [Google Scholar] [CrossRef]
- Muthu, M.S. Nanoparticles based on PLGA and its co-polymer: An overview. Asian J. Pharm. 2009, 3, 266–273. [Google Scholar] [CrossRef]
- Orive, G.; Hernández, R.M.; Gascón, A.R.; Pedraz, J.L. Micro and nano drug delivery systems in cancer therapy. In Cancer Therapy; Teni Boulikas: Regulon, CA, USA, 2005; Volume 3, pp. 131–138. [Google Scholar]
- Bodmeier, M.; McGinity, J.W. The preparation and evaluation of drug containing poly(d,l-lactide) microspheres formed by the solvent evaporation. Pharm. Res. 1987, 4, 465–471. [Google Scholar] [CrossRef]
- Lee, T.H.; Wang, J.; Wang, C.H. Double-walled microspheres for sustained release of a highly water soluble drug: Characterization and irradiation studies. J. Control. Release 2002, 83, 437–452. [Google Scholar] [CrossRef]
- Lee, W.L.; Loei, C.; Widjaja, E.; Loo, S.C.J. Altering the drug release profiles of double-layered ternary-phase microparticles. J. Control. Release 2011, 151, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.L.; Guo, W.M.; Ho, V.H.B.; Saha, A.; Chong, H.C.; Tan, N.S.; Loo, S.C.J. Delivery of doxorubicin and paclitaxel from double-layered microparticles: The effects of layer thickness and dual-drug vs. single-drug loading. Acta Biomater. 2015, 27, 53–65. [Google Scholar] [CrossRef]
- Zheng, W. A water-in-oil-in-oil-in-water (W/O/O/W) method for producing drug-releasing, double-walled microspheres. Int. J. Pharmaceut. 2009, 374, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.A.; Mathiowitsz, E. Localization of bovine serum albumin in double-walled microspheres. J. Control. Release 2004, 94, 163–175. [Google Scholar] [CrossRef]
- Shi, M.; Yang, Y.-Y.; Chaw, C.-S.; Goh, S.-H.; Moochhala, S.M.; Ng, S.; Heller, J. Double walled POE/PLGA microspheres: Encapsulation of water soluble and water-insoluble proteins and their release properties. J. Control. Release 2003, 89, 167–177. [Google Scholar] [CrossRef]
- Shi, M.; Yang, Y.-Y.; Chaw, C.-S.; Goh, S.-H.; Moochhala, S.M.; Ng, S.; Heller, J. POE/PLGA composite microspheres: Formation and in vitro behavior of double walled microspheres. J. Control. Release 2003, 88, 201–213. [Google Scholar] [CrossRef]
- Albuquerque, B.; Costa, M.S.; Peça, I.N.; Cardoso, M.M. Production of double-walled nanoparticles containing meloxicam. Polym. Eng. Sci. 2013, 53, 146–152. [Google Scholar] [CrossRef]
- Monneret, C. Recent developments in the field of antitumour anthracyclines. Europ. J. Med. Chem. 2001, 36, 483–493. [Google Scholar] [CrossRef]
- Arcamone, F. Doxorubicin: Anticancer Antibiotics; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Woo, E.M.; Tseng, Y.C. Glass transition and miscibility in blends of two semicrystalline polymers: Poly (aryl ether ketone) and poly(ether ether ketone). J. Polym. Sci. Part B 1999, 37, 1485–1494. [Google Scholar] [CrossRef]
- Cameron, N.; Cowie, J.M.G.; Ferguson, R.; Ribelles, J.L.G.; Estellés, J.M. Transition from miscibility to immiscibility in blends of poly(methyl methacrylate) and styrene-acrylonitrile Copolymers with Varying Copolymer composition: A DSC study. Eur. Polym. J. 2002, 38, 597–605. [Google Scholar] [CrossRef]
- Papadimitriou, S.; Bikiaris, D.; Avgoustakis, K.; Karavas, E.; Georgarakis, M. Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohydr. Polym. 2008, 73, 44–54. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release 1987, 5, 37–42. [Google Scholar] [CrossRef]
Particle | n | n Error (%) | k (day−1) | k Error (%) | r2 |
---|---|---|---|---|---|
DOX–DWNP 2:1 | 0.58 | 7.6 | 3.28 | 10.6 | 0.99 |
DOX–DWNP 4:1 | 0.49 | 10.1 | 2.98 | 11.3 | 0.99 |
DOX–DWNP 6:1 | 0.43 | 2.1 | 1.32 | 4.9 | 0.99 |
PLGA NP | 0.62 | 1.9 | 6.96 | 1.5 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, M.M.; Peca, I.N.; Lopes, T.; Gardner, R.; Bicho, A. Double-Walled Poly-(D,L-lactide-co-glycolide) (PLGA) and Poly(L-lactide) (PLLA) Nanoparticles for the Sustained Release of Doxorubicin. Polymers 2021, 13, 3230. https://doi.org/10.3390/polym13193230
Cardoso MM, Peca IN, Lopes T, Gardner R, Bicho A. Double-Walled Poly-(D,L-lactide-co-glycolide) (PLGA) and Poly(L-lactide) (PLLA) Nanoparticles for the Sustained Release of Doxorubicin. Polymers. 2021; 13(19):3230. https://doi.org/10.3390/polym13193230
Chicago/Turabian StyleCardoso, M. Margarida, Inês N. Peca, Telma Lopes, Rui Gardner, and A. Bicho. 2021. "Double-Walled Poly-(D,L-lactide-co-glycolide) (PLGA) and Poly(L-lactide) (PLLA) Nanoparticles for the Sustained Release of Doxorubicin" Polymers 13, no. 19: 3230. https://doi.org/10.3390/polym13193230
APA StyleCardoso, M. M., Peca, I. N., Lopes, T., Gardner, R., & Bicho, A. (2021). Double-Walled Poly-(D,L-lactide-co-glycolide) (PLGA) and Poly(L-lactide) (PLLA) Nanoparticles for the Sustained Release of Doxorubicin. Polymers, 13(19), 3230. https://doi.org/10.3390/polym13193230