Preparation of Emulsifier-Free Styrene–Acrylic Emulsion via Reverse Iodine Transfer Polymerization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Emulsifier-Free Copolymerization of Acrylate Monomers
2.2.2. Chain Extension Reaction with BA and St
2.2.3. Modification of the Emulsion Polymer
2.2.4. Preparation of Dried Emulsion Films
2.3. Characterizations
2.3.1. Viscosity
2.3.2. Monomer Conversion
2.3.3. Particle Diameter
2.3.4. Molecular Weight
2.3.5. Glass Transition Temperature
2.3.6. Fourier-Transform Infrared Spectroscopy
2.3.7. Transmission Electron Microscopy
2.3.8. Hardness Rank of the Modified Film
2.3.9. Adhesive Property Rank of the Modified Film
2.3.10. Water Resistance of the Modified Film
2.3.11. Water Absorption of the Modified Film
2.3.12. Toluene Absorption of the Modified Film
2.3.13. Tensile Strength
3. Results and Discussion
3.1. Participation of Styrene in Emulsifier-Free Polymerization
3.2. Influence of the Amount of PEGMA on Emulsifier-Free Polymerization
3.3. Influence of Iodine on Copolymerization
3.4. Kineticks in RITP Emulsion Copolymerization
3.5. Chain Extension Reaction with St and BA in Emulsion Polymerization
3.6. Infrared Spectra of Polymer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jones, F.N.; Nichols, M.E.; Pappas, S.P. Latexes. In Organic Coatings: Science and Technology, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; p. 133. [Google Scholar]
- Jiao, C.; Sun, L.; Shao, Q.; Song, J.; Hu, Q.; Naik, N.; Guo, Z. Advances in Waterborne Acrylic Resins: Synthesis Principle, Modification Strategies, and Their Applications. ACS Omega 2021, 6, 2443–2449. [Google Scholar] [CrossRef] [PubMed]
- Sajjadi, S.; Jahanzad, F. Nanoparticle formation by highly diffusion-controlled emulsion polymerisation. Chem. Eng. Sci. 2006, 61, 3001–3008. [Google Scholar] [CrossRef]
- Schmid, A.; Scherl, P.; Armes, S.P.; Leite, C.A.P.; Galembeck, F. Synthesis and Characterization of Film-Forming Colloidal Nanocomposite Particles Prepared via Surfactant-Free Aqueous Emulsion Copolymerization. Macromolecules 2009, 42, 3721–3728. [Google Scholar] [CrossRef]
- Xu, G.; Lei, X.; Hu, J.; Pi, P.; Yang, Z. Preparation of Raspberry-Like Nanocomposite Microspheres Based on Soap-Free Cationic Latex and Nano-SiO2 Particles. Polym-Plast. Technol. Eng. 2013, 52, 510–513. [Google Scholar] [CrossRef]
- Bladé, T.; Malosse, L.; Duguet, E.; Lansalot, M.; Bourgeat-Lami, E.; Ravaine, S. Synthesis of nanoscaled poly(styrene-co-n-butyl acrylate)/silica particles with dumbbell- and snowman-like morphologies by emulsion polymerization. Polym. Chem. 2014, 5, 5609–5616. [Google Scholar] [CrossRef]
- Guimarães, T.R.; Khan, M.; Kuchel, R.P.; Morrow, I.C.; Minami, H.; Moad, G.; Perrier, S.; Zetterlund, P.B. Nano-Engineered Multiblock Copolymer Nanoparticles via Reversible Addition–Fragmentation Chain Transfer Emulsion Polymerization. Macromolecules 2019, 52, 2965–2974. [Google Scholar] [CrossRef]
- Deane, O.J.; Musa, O.M.; Fernyhough, A.; Armes, S.P. Synthesis and Characterization of Waterborne Pyrrolidone-Functional Diblock Copolymer Nanoparticles Prepared via Surfactant-free RAFT Emulsion Polymerization. Macromolecules 2020, 53, 1422–1434. [Google Scholar] [CrossRef]
- Sundberg, D. Structured, Composite Nanoparticles from Emulsion Polymerization–Morphological Possibilities. Biomacromolecules 2020, 21, 4388–4395. [Google Scholar] [CrossRef]
- Garay-Jimenez, J.C.; Gergeres, D.; Young, A.; Lim, D.V.; Turos, E. Physical properties and biological activity of poly(butyl acrylate–styrene) nanoparticle emulsions prepared with conventional and polymerizable surfactants. Nanotechnol. Biol. Med. 2009, 5, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Turos, E.; Garay-Jimenez, J.C.; Sona, A.J. An evaluation of non-ionic surfactants on the cytotoxicity and activity of poly(butyl acrylate/styrene) nanoparticle emulsions. J. Nanopart Res. 2019, 21, 165. [Google Scholar] [CrossRef]
- Kakran, M.; Antipina, M.N. Emulsion-based techniques for encapsulation in biomedicine, food and personal care. Curr. Opin. Pharmacol. 2014, 18, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Rajaee, A.; Farzi, G. Encapsulation of paclitaxel in ultra-fine nanoparticles of acrylic/styrene terpolymer for controlled release. Colloid Polym. Sci. 2016, 294, 95–105. [Google Scholar] [CrossRef]
- Jones, F.N.; Nichols, M.E.; Pappas, S.P. Polymerization and Film Formation. In Organic Coatings: Science and Technology, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; p. 12. [Google Scholar]
- Barandiaran, M.J.; Cal, J.C.; Asua, J.M. Emulsion Polymerization. In Polymer Reaction Engineering; Blackwell Publishing Ltd.: Oxford, UK, 2007; p. 233. [Google Scholar]
- Wang, T.; Canetta, E.; Weerakkody, T.G.; Keddie, J.L.; Rivas, U. pH Dependence of the Properties of Waterborne Pressure-Sensitive Adhesives Containing Acrylic Acid. ACS Appl. Mater. Interfaces 2009, 1, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, F.N.; Nichols, M.E.; Pappas, S.P. Latexes. In Organic Coatings: Science and Technology, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; p. 126. [Google Scholar]
- Balani, K.; Verma, V.; Agarwal, A.; Narayan, R. Physical, Thermal, and Mechanical Properties of Polymers. In Biosurfaces; John Wiley & Sons: Hoboken, NJ, USA, 2014; p. 337. [Google Scholar]
- Barandiaran, M.J.; Cal, J.C.; Asua, J.M. Emulsion Polymerization. In Polymer Reaction Engineering; Blackwell Publishing Ltd.: Oxford, UK, 2007; p. 238. [Google Scholar]
- Darabi, A.; Rezaee Shirin-Abadi, A.; Avar, S.; Cunningham, M.F. Surfactant-free emulsion copolymerization of styrene and methyl methacrylate for preparation of water-redispersible polymeric powders. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 2376–2381. [Google Scholar] [CrossRef]
- Darabi, A.; Cunningham, M.F. Preparation of Poly(poly(ethylene glycol)methyl ether methacrylate-co-styrene)-b-poly(2-(diethylamino)ethyl methacrylate-co-acrylonitrile) by nitroxide-mediated polymerisation in water. Polymer 2017, 115, 255–260. [Google Scholar] [CrossRef]
- Jones, F.N.; Nichols, M.E.; Pappas, S.P. Amino Resins. In Organic Coatings: Science and Technology, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; p. 156. [Google Scholar]
- Robinson, K.L.; Khan, M.A.; de Paz Báñez, M.V.; Wang, X.S.; Armes, S.P. Controlled Polymerization of 2-Hydroxyethyl Methacrylate by ATRP at Ambient Temperature. Macromolecules 2001, 34, 3155–3158. [Google Scholar] [CrossRef]
- Ouchi, M.; Yoda, H.; Terashima, T.; Sawamoto, M. Aqueous metal-catalyzed living radical polymerization: Highly active water-assisted catalysis. Polym. J. 2012, 44, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.-Y.; Zhu, Z.-W.; Gong, S.-L. Synthesis of stable high hydroxyl content self-emulsifying waterborne polyacrylate emulsion. J. Appl. Polym. Sci. 2017, 134, 44844. [Google Scholar] [CrossRef]
- Mun, G.A.; Khutoryanskiy, V.V.; Akhmetkalieva, G.T.; Shmakov, S.N.; Dubolazov, A.V.; Nurkeeva, Z.S.; Park, K. Interpolymer complexes of poly(acrylic acid) with poly(2-hydroxyethyl acrylate) in aqueous solutions. Colloid Polym. Sci. 2004, 283, 174–181. [Google Scholar] [CrossRef]
- Mun, G.A.; Nurkeeva, Z.S.; Beissegul, A.B.; Dubolazov, A.V.; Urkimbaeva, P.I.; Park, K.; Khutoryanskiy, V.V. Temperature-Responsive Water-Soluble Copolymers Based on 2-Hydroxyethyl Acrylate and Butyl Acrylate. Macromol. Chem. Phys. 2007, 208, 979–987. [Google Scholar] [CrossRef]
- Huang, T.; Yuan, Q.-X.; Gong, S.-L. Emulsifier-Free Acrylate-Based Emulsion Prepared by Reverse Iodine Transfer Polymerization. Polymers 2020, 12, 730. [Google Scholar] [CrossRef] [Green Version]
- Ottewill, R.H. Stabilization of polymer colloid dispersions. In Emulsion Polymerization and Emulsion Polymers; Lovell, P.A., El-Aasser, M.S., Eds.; John Wiley & Sons: Chichester, UK, 1997; p. 105. [Google Scholar]
- Tuncel, A. Emulsion copolymerization of styrene and poly(ethylene glycol) ethyl ether methacrylate. Polymer 2000, 41, 1257–1267. [Google Scholar] [CrossRef]
- Hong, C.K.; Hwang, M.J.; Ryu, D.W.; Moon, H. Preparation of copolymer particles by emulsion polymerization using a polymerizable amphiphilic macromonomer. Colloids Surf. A Physicochem. Eng. Asp. 2008, 331, 250–256. [Google Scholar] [CrossRef]
- Zetterlund, P.B.; Thickett, S.C.; Perrier, S.; Bourgeat-Lami, E.; Lansalot, M. Controlled/Living Radical Polymerization in Dispersed Systems: An Update. Chem. Rev. 2015, 115, 9745–9800. [Google Scholar] [CrossRef] [PubMed]
- Ravve, A. Free-Radical Chain-Growth Polymerization. In Principles of Polymer Chemistry, 3rd ed.; Springer: New York, NY, USA, 2012; p. 115. [Google Scholar]
- Rieger, J.; Stoffelbach, F.; Bui, C.; Alaimo, D.; Jérôme, C.; Charleux, B. Amphiphilic Poly(ethylene oxide) Macromolecular RAFT Agent as a Stabilizer and Control Agent in ab Initio Batch Emulsion Polymerization. Macromolecules 2008, 41, 4065–4068. [Google Scholar] [CrossRef]
- Zhang, X.; Boissé, S.; Zhang, W.; Beaunier, P.; D’Agosto, F.; Rieger, J.; Charleux, B. Well-Defined Amphiphilic Block Copolymers and Nano-objects Formed in Situ via RAFT-Mediated Aqueous Emulsion Polymerization. Macromolecules 2011, 44, 4149–4158. [Google Scholar] [CrossRef]
- Truong, N.P.; Dussert, M.V.; Whittaker, M.R.; Quinn, J.F.; Davis, T.P. Rapid synthesis of ultrahigh molecular weight and low polydispersity polystyrene diblock copolymers by RAFT-mediated emulsion polymerization. Polym. Chem. 2015, 6, 3865–3874. [Google Scholar] [CrossRef]
- Ni, Y.; Tian, C.; Zhang, L.; Cheng, Z.; Zhu, X. Photocontrolled Iodine-Mediated Green Reversible-Deactivation Radical Polymerization of Methacrylates: Effect of Water in the Polymerization System. ACS Macro Lett. 2019, 8, 1419–1425. [Google Scholar] [CrossRef]
- Tonnar, J.; Lacroix-Desmazes, P.; Boutevin, B. Living Radical Ab Initio Emulsion Polymerization of n-Butyl Acrylate by Reverse Iodine Transfer Polymerization. In Controlled/Living Radical Polymerization: From Synthesis to Materials; Matyjasjzewski, K., Ed.; American Chemical Society: Washington, DC, USA, 2006; Volume 944, pp. 604–619. [Google Scholar]
- Koltzenburg, S.; Maskos, M.; Nuyken, O. Radical Polymerization. In Polymer Chemistry; Springer: Berlin/Heidelberg, Germany, 2017; p. 241. [Google Scholar]
- Tuncel, A.; Serpen, E. Emulsion copolymerization of styrene and methacrylic acid in the presence of a polyethylene oxide based-polymerizable stabilizer with a shorter chain length. Colloid Polym. Sci. 2001, 279, 240–251. [Google Scholar] [CrossRef]
- Nagy, K.; Körtvélyesi, T.; Nagypál, I. Iodine Hydrolysis Equilibrium. J. Solut. Chem. 2003, 32, 385–393. [Google Scholar] [CrossRef]
- Tonnar, J.; Lacroix-Desmazes, P.; Boutevin, B. Controlled Radical Ab Initio Emulsion Polymerization of n-Butyl Acrylate by Reverse Iodine Transfer Polymerization (RITP): Effect of the Hydrolytic Disproportionation of Iodine. Macromol. Rapid Commun. 2006, 27, 1733–1738. [Google Scholar] [CrossRef]
- Tonnar, J.; Lacroix-Desmazes, P.; Boutevin, B. Living Radical ab Initio Emulsion Polymerization of n-Butyl Acrylate by Reverse Iodine Transfer Polymerization (RITP): Use of Persulfate as Both Initiator and Oxidant. Macromolecules 2007, 40, 6076–6081. [Google Scholar] [CrossRef]
- Lacroix-Desmazes, P.; Tonnar, J.; Boutevin, B. Reverse Iodine Transfer Polymerization (RITP) in Emulsion. Macromol. Symp. 2007, 248, 150–157. [Google Scholar] [CrossRef]
- Tonnar, J.; Lacroix-Desmazes, P.; Boutevin, B. Controlled Radical Polymerization of Styrene by Reverse Iodine Transfer Polymerization (RITP) in Miniemulsion: Use of Hydrogen Peroxide as Oxidant. Macromolecules 2007, 40, 186–190. [Google Scholar] [CrossRef]
- Lorandi, F.; Wang, Y.; Fantin, M.; Matyjaszewski, K. Ab Initio Emulsion Atom-Transfer Radical Polymerization. Angew. Chem. Int. Ed. 2018, 57, 8270–8274. [Google Scholar] [CrossRef] [PubMed]
- Cowie, J.M.G.; Arrighi, V. Free-Radical Addition Polymerization. In Polymers: Chemistry and Physics of Modern Materials, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 67–70. [Google Scholar]
- McCord, E.F.; Shaw, W.H.; Hutchinson, R.A. Short-chain branching structures in ethylene copolymers prepared by high-pressure free-radical polymerization: An NMR analysis. Macromolecules 1997, 30, 246–256. [Google Scholar] [CrossRef]
- Plessis, C.; Arzamendi, G.; Leiza, J.R.; Schoonbrood, H.A.S.; Charmot, D.; Asua, J.M. Seeded Semibatch Emulsion Polymerization of n-Butyl Acrylate. Kinetics and Structural Properties. Macromolecules 2000, 33, 5041–5047. [Google Scholar] [CrossRef]
- Asua, J.M. Emulsion polymerization: From fundamental mechanisms to process developments. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 1025–1041. [Google Scholar] [CrossRef]
- Cowie, J.M.G.; Arrighi, V. Polymers in Solution. In Polymers: Chemistry and Physics of Modern Materials, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2007; p. 197. [Google Scholar]
- Brown, R.; Stützel, B.; Sauer, T. Steric stabilization by grafting and copolymerization of water-soluble oligomers and polymers. Macromol. Chem. Phys. 1995, 196, 2047–2064. [Google Scholar] [CrossRef]
- Ottewill, R.H.; Satgurunathan, R.; Waite, F.A.; Westby, M.J. Non-ionic polystyrene latices in aqueous media. Br. Polym. J. 1987, 19, 435–440. [Google Scholar] [CrossRef]
- Ravve, A. Free-Radical Chain-Growth Polymerization. In Principles of Polymer Chemistry, 3rd ed.; Springer: New York, NY, USA, 2012; p. 84. [Google Scholar]
- Barandiaran, M.J.; Cal, J.C.; Asua, J.M. Emulsion Polymerization. In Polymer Reaction Engineering; Blackwell Publishing Ltd.: Oxford, UK, 2007; p. 250. [Google Scholar]
- Szabó, Á.; Szarka, G.; Iván, B. Synthesis of Poly(poly(ethylene glycol) methacrylate)–Polyisobutylene ABA Block Copolymers by the Combination of Quasiliving Carbocationic and Atom Transfer Radical Polymerizations. Macromol. Rapid Commun. 2015, 36, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Ravve, A. Physical Properties and Physical Chemistry of Polymers. In Principles of Polymer Chemistry, 3rd ed.; Springer: New York, NY, USA, 2012; p. 22. [Google Scholar]
- Ravve, A. Common Chain-Growth Polymers. In Principles of Polymer Chemistry, 3rd ed.; Springer: New York, NY, USA, 2012; p. 370. [Google Scholar]
- Jones, F.N.; Nichols, M.E.; Pappas, S.P. Polymerization and Film Formation. In Organic Coatings: Science and Technology, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; p. 9. [Google Scholar]
- Tonnar, J.; Lacroix-Desmazes, P. One-pot surfactant-free functional latexes by controlled radical polymerization in ab initio emulsion. Soft Matter 2008, 4, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Yeap, S.P.; Che, H.X.; Low, S.C. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett. 2013, 8, 381. [Google Scholar] [CrossRef] [Green Version]
- Bell, N.C.; Minelli, C.; Tompkins, J.; Stevens, M.M.; Shard, A.G. Emerging Techniques for Submicrometer Particle Sizing Applied to Stöber Silica. Langmuir 2012, 28, 10860–10872. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Kumbhat, S. Characterization Tools for Nanomaterials. In Essentials in Nanoscience and Nanotechnology; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 77–148. [Google Scholar]
m(MMA)/m(St) | Conversion (%) | Mn,tha (103 g·mol−1) | Mn,GPC (103 g·mol−1) | Ɖ | dp(nm) b/PDI | Viscosity (mPa·s)/Rotor Type/Rotor Rate (rpm) | Reaction Phenomena |
---|---|---|---|---|---|---|---|
0/10 | - | - | - | - | - | - | Opalescent, a lot of gel. |
4/6 | 99.5 | 7.34 | 18.6 | 1.89 | 359/0.139 | 2350/F/750 | Opalescent, high viscosity, no gel. |
6/4 | >99.5 | 7.38 | 24.1 | 1.70 | 429/0.040 | 639/F/750 | Opalescent with weak blue color. |
8/2 | 96.8 | 7.15 | 27.5 | 1.56 | 409/0.042 | 664/F/750 | Opalescent with weak blue color. |
10/0 | >99.5 | 7.38 | 30.2 | 1.62 | 357/0.066 | 525/F/750 | Opalescent with weak blue color. |
m(MMA)/m(St) | Pencil Hardness of the Dried Emulsion Film | Pencil Hardness of the Modified Film | Adhesive Property of the Dried Emulsion Film | Adhesive Property of the Modified Film | Toluene Absorption (Wt.%) | Water Absorption (Wt.%) | Water Resistance in Boiled Water |
---|---|---|---|---|---|---|---|
4/6 | 1 H | 2 H | 1 | 0 | 12.2 | 5.70 | Whitening |
6/4 | 1 H | 2 H | 1 | 0 | 12.0 | 5.42 | Translucent |
8/2 | 1 H | 2 H | 1 | 0 | 11.4 | 4.47 | Whitening |
10/0 | - | 2 H | - | 0 | 16.9 | 3.82 | Translucent |
m(PEGMA)/m(MAA) | Conversion (%) | Mn,th (103 g·mol−1) | Mn,GPC (103 g·mol−1) | Ɖ | dp(nm)/PDI | Viscosity (mPa·s)/Rotor Type/Rotor Rate (rpm) | Reaction Phenomena |
---|---|---|---|---|---|---|---|
0/10 | - | - | - | - | - | - | Opalescent, high viscosity, and poor fluidity. |
3/7 | >99.5 | 7.14 | 27.4 | 1.64 | 336/0.187 | 1210/G/750 | Opalescent, no gel. |
5/5 | 94.6 | 6.61 | 23.3 | 1.70 | 271/0.201 | 151/F/750 | Opalescent with weak blue color. |
7/3 | 83.0 | 5.70 | 21.0 | 1.79 | 220/0.037 | 38.2/F/750 | Opalescent with weak blue color, little white precipitate. |
m(PEGMA)/m(MAA) | Pencil Hardness Rank | Adhesion Property Rank | Water Absorption (Wt.%) |
---|---|---|---|
3/7 | 2 H | 1 | 5.70 |
5/5 | 2 H | 1 | 4.69 |
7/3 | 2 H | 4 | 2.57 |
m(MAA)/m(PEGMA) | Reaction Time(min) | Conversion (%) | Mn,GPC (103 g·mol−1) | Ɖ | dp(nm)/PDI | Viscosity (mPa·s)/Rotor Type/Rotor Rate (rpm) | Reaction Phenomena |
---|---|---|---|---|---|---|---|
10/0 | 210 | >99.5 | 30.2 | 1.62 | 357/0.066 | 525/F/750 | Milky white with weak blue color. |
0/10 | 320 | - | - | - | - | - | Pale yellow color, a lot of flocculation |
m(MMA)/m(St) | Conversion (%) | Mn,th (103 g·mol−1) | Mn,GPC (103 g·mol−1) | Ɖ | dp(nm)/PDI | Viscosity (mPa·s)/Rotor Type/Rotor Rate (rpm) | Solid Content (wt.%) |
---|---|---|---|---|---|---|---|
0/10 | >99.5 | 7.14 | 27.4 | 1.64 | 336/0.187 | 1210/G/750 | 45.8 |
2/8 | 99.5 | 7.10 | 22.7 | 1.75 | 340/0.050 | 454/F/750 | 41.8 |
4/6 | 98.8 | 7.06 | 21.3 | 1.85 | 333/0.097 | 46.9/E/750 | 41.5 |
6/4 | 97.6 | 6.97 | 22.8 | 1.73 | 377/0.062 | 501/F/750 | 41.0 |
8/2 | 96.2 | 6.87 | 27.3 | 1.57 | 454/0.249 | 415/F/750 | 40.4 |
10/0 | >99.5 | 7.14 | 26.5 | 1.65 | 430/0.061 | 1270/G/750 | 42.6 |
m(MMA)/m(St) | Pencil Hardness Rank | Adhesive Property Rank | Toluene Absorption (Wt. %) | Water Absorption (Wt. %) | Water Resistance in Boiled Water |
---|---|---|---|---|---|
0/10 | 2 H | 1 | 16.0 | 5.70 | Whitening |
4/6 | 1 H | 0 | 13.7 | 4.05 | Whitening |
6/4 | 2 H | 0 | 13.8 | 2.98 | Whitening |
8/2 | 2 H | 0 | 12.8 | 3.67 | Translucent |
10/0 | 3 H | 0 | 12.4 | 2.28 | Translucent |
m(PEGMA)/m(MAA) | Conversion (%) | Mn,th (103 g·mol−1) | Mn,GPC (103 g·mol−1) | Ɖ | dp(nm)/PDI | Viscosity (mPa·s)/Rotor Type/Rotor Rate (rpm) | Solid Content (wt.%) |
---|---|---|---|---|---|---|---|
1/7 | >99.5 | 6.98 | 21.9 | 1.80 | 342/0.073 | 594/F/750 | 42.7 |
3/7 | 98.8 | 7.20 | 21.3 | 1.85 | 333/0.097 | 46.9/E/750 | 41.5 |
5/7 | >99.5 | 7.29 | 19.0 | 1.90 | 521/0.134 | 530/F/750 | 44.4 |
7/7 | >99.5 | 7.45 | 21.0 | 1.84 | 507/0.176 | 552/F/750 | 44.9 |
9/7 | >99.5 | 7.60 | 21.3 | 1.78 | 442/0.054 | 620/F/750 | 45.1 |
12/7 | 99.4 | 7.78 | 21.9 | 1.72 | 439/0.157 | 767/F/750 | 46.1 |
m(PEGMA)/m(MAA) | Pencil Hardness Rank | Adhesive Property Rank | Water Absorption (wt. %) |
---|---|---|---|
1/7 | 2 H | 0 | 3.52 |
3/7 | 1 H | 0 | 4.05 |
5/7 | 2 H | 0 | 5.03 |
7/7 | 2 H | 0 | 7.85 |
9/7 | 2 H | 0 | 4.41 |
12/7 | 2 H | 0 | 2.89 |
Run | m(I2)/m(I2)0 | Conversion (%) | Mn,th (103 g·mol−1) | Mn,GPC (103 g·mol−1) | Ɖ | dp(nm)/PDI | Solid Content (wt.%) |
---|---|---|---|---|---|---|---|
1a α | 1/1 | 94.6 | 6.75 | 23.3 | 1.70 | 271/0.201 | 39.7 |
1b β | 1/1 | >99.5 | 6.98 | 19.4 | 1.97 | 287/0.052 | 42.6 |
2a | 4/5 | 96.4 | 8.35 | 24.8 | 1.71 | 295/0.194 | 40.4 |
3a | 3/5 | 94.6 | 10.84 | 24.8 | 1.63 | 282/0.107 | 39.8 |
3b | 3/5 | 98.5 | 11.27 | 32.1 | 1.45 | 333/0.096 | 42.2 |
4a | 2/5 | 93.5 | 15.94 | 26.0 | 1.58 | 382/0.181 | 39.3 |
5a | 1/4 | 90.4 | 24.50 | 27.1 | 1.50 | 324/0.093 | 38.0 |
5b | 1/4 | >99.5 | 27.08 | 32.9 | 1.42 | 373/0.255 | 43.7 |
Run | m(I2)/m(I2)0 | Conversion (%) | Mn,th (103 g·mol−1) | Mn,GPC (103 g·mol−1) | Ɖ | dp(nm)/PDI | Solid Content (wt.%) |
---|---|---|---|---|---|---|---|
1a α | 1/1 | 98.8 | 7.06 | 21.3 | 1.85 | 333/0.097 | 41.5 |
1b β | 1/1 | >99.5 | 7.14 | 21.9 | 1.81 | 327/0.088 | 43.9 |
2b | 3/5 | 93.3 | 10.94 | 25.2 | 1.66 | 407/0.074 | 39.9 |
3b | 1/4 | >99.5 | 27.73 | 40.7 | 1.27 | 403/0.132 | 43.6 |
Type | Stage Time (min) | Conversion (%) | Mn,th (103 g·mol−1) | Mn,GPC (103 g·mol−1) | Ɖ | dp(nm)/PDI | Solid Content (wt.%) |
---|---|---|---|---|---|---|---|
Seed Polymer Poly (PEGMA-co-MAAa-co-HEMA-co-BMA) | 130 | >99.5 | 9.05 | 19.3 | 1.80 | 383/0.205 | 36.0 |
Block Copolymer Poly (PEGMA-co-MAAa-co-HEMA-co-BMA)-b-Poly (BA-co-St) | 90 | >99.5 | 11.44 | 29.4 | 1.58 | 463/0.077 | 44.6 |
Type | Stage Time (min) | Conversion (%) | Solid Content (wt.%) | Emulsion Appearance |
---|---|---|---|---|
Seed Polymer Poly(PEGMA-co-MAAa-co-BMA-co-MMA-St) | 168 | 96.2 | 38.5 | Opalescent with weak blue color. |
Block Copolymer Poly(PEGMA-co-MAAa-co-BMA-co-MMA-St)-b-Poly(PEGMA-co-MAAa-co-BMA-co-MMA-St-co-BA-co-HEMA) | 33 | - | - | Opalescent, a lot of gel. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.; Gong, S. Preparation of Emulsifier-Free Styrene–Acrylic Emulsion via Reverse Iodine Transfer Polymerization. Polymers 2021, 13, 3348. https://doi.org/10.3390/polym13193348
Huang T, Gong S. Preparation of Emulsifier-Free Styrene–Acrylic Emulsion via Reverse Iodine Transfer Polymerization. Polymers. 2021; 13(19):3348. https://doi.org/10.3390/polym13193348
Chicago/Turabian StyleHuang, Tao, and Shuling Gong. 2021. "Preparation of Emulsifier-Free Styrene–Acrylic Emulsion via Reverse Iodine Transfer Polymerization" Polymers 13, no. 19: 3348. https://doi.org/10.3390/polym13193348
APA StyleHuang, T., & Gong, S. (2021). Preparation of Emulsifier-Free Styrene–Acrylic Emulsion via Reverse Iodine Transfer Polymerization. Polymers, 13(19), 3348. https://doi.org/10.3390/polym13193348