Trilayer Composite System Based on SiO2, Thiol-Ene, and PEDOT:PSS. Focus on Stability after Thermal Treatment and Solar Irradiance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of the Trilayer Composite
2.3. Characterization
2.4. Treatment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Qin, J.; Shen, J.; Guo, S.; Lamnawar, K. Scratch behavior and mechanical properties of alternating multi-layered PMMA/PC materials. Wear 2021, 486, 204069. [Google Scholar] [CrossRef]
- Wiener, J.; Kaineder, H.; Kolednik, O.; Arbeiter, F. Optimization of mechanical properties and damage tolerance in polymer-mineral multilayer composites. Materials 2021, 14, 725. [Google Scholar] [CrossRef]
- Langhe, D.; Ponting, M. Manufacturing and Novel Applications of Multilayer Polymer Films; William Andrew: New York, NY, USA, 2016. [Google Scholar]
- Pandit, P.; Schwartzkopf, M.; Rothkirch, A.; Roth, S.V.; Bernstorff, S.; Gupta, A. Structure–function correlations in sputter deposited gold/fluorocarbon multilayers for tuning optical response. Nanomaterials 2019, 9, 1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Park, H.; Seong, S.; Chung, Y. Multilayer substrate to use brittle materials in flexible electronics. Sci. Rep. 2020, 10, 1–8. [Google Scholar]
- Liu, S.; Wang, S.; Xuan, S.; Zhang, S.; Fan, X.; Jiang, H.; Song, P.; Gong, X. Highly flexible multilayered e-skins for thermal-magnetic-mechanical triple sensors and intelligent grippers. ACS Appl. Mater. Interfaces 2020, 12, 15675–15685. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qian, Q.; Zhu, X.; Li, Y.; Zhang, M.; Li, J.; Ma, C.; Li, H.; Lu, J.; Zhang, Q. Recent advances in organic-based materials for resistive memory applications. InfoMat 2020, 2, 995–1033. [Google Scholar] [CrossRef]
- Han, M.J.; Yoon, D.K. Advances in soft materials for sustainable electronics. Engineering 2021, 7, 564–580. [Google Scholar] [CrossRef]
- Guo, H.; Chen, T.; Yu, L.; Chen, A.; Sun, T.; Wang, J.; Wang, C.; Zhang, J.; Yang, Y. Enhanced performance of Si/PEDOT: PSS heterojunction solar cells via multi-walled carbons coated with polydopamine. Opt. Mater. 2021, 120, 111375. [Google Scholar] [CrossRef]
- Fan, X.; Nie, W.; Tsai, H.; Wang, N.; Huang, H.; Cheng, Y.; Wen, R.; Ma, L.; Yan, F.; Xia, Y. PEDOT: PSS for flexible and stretchable electronics: Modifications, strategies, and applications. Adv. Sci. 2019, 6, 1900813. [Google Scholar] [CrossRef] [Green Version]
- Anand, A.; Madalaimuthu, J.P.; Schaal, M.; Otto, F.; Gruenewald, M.; Alam, S.; Fritz, T.; Schubert, U.S.; Hoppe, H. Why organic electronic devices comprising PEDOT: PSS electrodes should be fabricated on metal free Substrates. ACS Appl. Electron. Mater. 2021, 3, 929–943. [Google Scholar] [CrossRef]
- Tarabella, G.; Vurro, D.; Lai, S.; D’Angelo, P.; Ascari, L.; Iannotta, S. Aerosol jet printing of PEDOT: PSS for large area flexible electronics. Flex. Print. Electron. 2020, 5, 014005. [Google Scholar] [CrossRef]
- Lipomi, D.J.; Lee, J.A.; Vosgueritchian, M.; Tee, B.C.-K.; Bolander, J.A.; Bao, Z. Electronic properties of transparent conductive films of PEDOT: PSS on stretchable substrates. Chem. Mater. 2012, 24, 373–382. [Google Scholar] [CrossRef]
- Song, M.-M.; Wang, Y.-M.; Liang, X.-Y.; Zhang, X.-Q.; Zhang, S.; Li, B.-J. Functional materials with self-healing properties: A review. Soft Matter 2019, 15, 6615–6625. [Google Scholar] [CrossRef]
- Geitner, R.; Legesse, F.B.; Kuhl, N.; Bocklitz, T.W.; Zechel, S.; Vitz, J.; Hager, M.; Schubert, U.S.; Dietzek, B.; Schmitt, M. Do you get what you see? Understanding molecular self-healing. Chem.–Eur. J. 2018, 24, 2493–2502. [Google Scholar] [CrossRef]
- Lowe, A.B. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym. Chem. 2010, 1, 17–36. [Google Scholar] [CrossRef]
- Nair, D.P.; Cramer, N.B.; Scott, T.F.; Bowman, C.N.; Shandas, R. Photopolymerized thiol-ene systems as shape memory polymers. Polymer 2010, 51, 4383–4389. [Google Scholar] [CrossRef] [Green Version]
- Hoyle, C.E.; Lowe, A.B.; Bowman, C.N. Thiol-click chemistry: A multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev. 2010, 39, 1355–1387. [Google Scholar] [CrossRef] [PubMed]
- Lazauskas, A.; Grigaliūnas, V.; Jucius, D. Recovery behavior of microstructured thiol-ene shape-memory film. Coatings 2019, 9, 267. [Google Scholar] [CrossRef] [Green Version]
- Lazauskas, A.; Jucius, D.; Baltrušaitis, V.; Gudaitis, R.; Prosyčevas, I.; Abakevičienė, B.; Guobienė, A.; Andrulevičius, M.; Grigaliūnas, V. Shape-memory assisted scratch-healing of transparent thiol-ene coatings. Materials 2019, 12, 482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-A.; Naidu, S.V.; Luo, Z.; Chang, C.-H. Enhancing optical transmission of multilayer composites using interfacial nanostructures. J. Appl. Phys. 2019, 126, 063101. [Google Scholar] [CrossRef]
- Mihoreanu, C.; Banciu, A.; Enesca, A.; Duta, A. Silica-based thin films for self-cleaning applications in solar energy converters. J. Energy Eng. 2017, 143, 04017029. [Google Scholar] [CrossRef]
- Li, Y.; Shen, H.; Hou, Z.; Wei, Q.; Hu, D. Formation of emitter by boron spin-on doping from SiO2 nanosphere and properties of the related n-PERT solar cells. Sol. Energy 2021, 225, 317–322. [Google Scholar] [CrossRef]
- Lazauskas, A.; Jucius, D.; Puodžiukynas, L.; Guobienė, A.; Grigaliūnas, V. SiO2-based nanostructured superhydrophobic film with high optical transmittance. Coatings 2020, 10, 934. [Google Scholar] [CrossRef]
- Zhang, M.; Höfle, S.; Czolk, J.; Mertens, A.; Colsmann, A. All-solution processed transparent organic light emitting diodes. Nanoscale 2015, 7, 20009–20014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.; Song, J.; Yin, X.; Su, Z.; Li, Z. Research progress on polymer solar cells based on PEDOT: PSS electrodes. Polymers 2020, 12, 145. [Google Scholar] [CrossRef] [Green Version]
- Jucius, D.; Lazauskas, A.; Grigaliūnas, V.; Gudaitis, R.; Guobienė, A.; Prosyčevas, I.; Abakevičienė, B.; Andrulevičius, M. Structure and properties of dual-doped PEDOT: PSS multilayer films. Mater. Res. 2019, 22. [Google Scholar] [CrossRef] [Green Version]
- Stalder, A.F.; Kulik, G.; Sage, D.; Barbieri, L.; Hoffmann, P. A snake-based approach to accurate determination of both contact points and contact angles. Colloids Surf. A Physicochem. Eng. Aspects 2006, 286, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Suzdal’tsev, E.; Lesnikov, A. Amorphous silicon dioxide: Preparation techniques and applications. Refract. Ind. Ceram. 2005, 46, 189–192. [Google Scholar] [CrossRef]
- Zhu, W.; Zheng, G.; Cao, S.; He, H. Thermal conductivity of amorphous SiO 2 thin film: A molecular dynamics study. Sci. Rep. 2018, 8, 1–9. [Google Scholar]
- Grunwald, T.; Wilhelm, D.P.; Dambon, O.; Bergs, T. Influence of glassy carbon surface finishing on its wear behavior during precision glass moulding of fused silica. Materials 2019, 12, 692. [Google Scholar] [CrossRef] [Green Version]
- Jucius, D.; Lazauskas, A.; Grigaliūnas, V.; Guobienė, A.; Puodžiukynas, L. Hot embossing of micro-pyramids into thermoset thiol-ene film. Polymers 2020, 12, 2291. [Google Scholar] [CrossRef]
- Jankauskaitė, V.; Narmontas, P.; Lazauskas, A. Control of polydimethylsiloxane surface hydrophobicity by plasma polymerized hexamethyldisilazane deposition. Coatings 2019, 9, 36. [Google Scholar] [CrossRef] [Green Version]
- Lazauskas, A.; Baltrusaitis, J.; Grigaliūnas, V.; Jucius, D.; Guobienė, A.; Prosyčevas, I.; Narmontas, P. Characterization of plasma polymerized hexamethyldisiloxane films prepared by arc discharge. Plasma Chem. Plasma Process. 2014, 34, 271–285. [Google Scholar] [CrossRef]
- Lazauskas, A.; Guobienė, A.; Prosyčevas, I.; Baltrušaitis, V.; Grigaliūnas, V.; Narmontas, P.; Baltrusaitis, J. Water droplet behavior on superhydrophobic SiO2 nanocomposite films during icing/deicing cycles. Mater. Charact. 2013, 82, 9–16. [Google Scholar] [CrossRef]
- Vitoratos, E.; Sakkopoulos, S.; Dalas, E.; Paliatsas, N.; Karageorgopoulos, D.; Petraki, F.; Kennou, S.; Choulis, S.A. Thermal degradation mechanisms of PEDOT: PSS. Org. Electron. 2009, 10, 61–66. [Google Scholar] [CrossRef]
- Elschner, A. The spectral sensitivity of PEDOT: PSS films. Sol. Energy Mater. Sol. Cells 2011, 95, 1333–1338. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazauskas, A.; Jucius, D.; Abakevičienė, B.; Guobienė, A.; Andrulevičius, M. Trilayer Composite System Based on SiO2, Thiol-Ene, and PEDOT:PSS. Focus on Stability after Thermal Treatment and Solar Irradiance. Polymers 2021, 13, 3439. https://doi.org/10.3390/polym13193439
Lazauskas A, Jucius D, Abakevičienė B, Guobienė A, Andrulevičius M. Trilayer Composite System Based on SiO2, Thiol-Ene, and PEDOT:PSS. Focus on Stability after Thermal Treatment and Solar Irradiance. Polymers. 2021; 13(19):3439. https://doi.org/10.3390/polym13193439
Chicago/Turabian StyleLazauskas, Algirdas, Dalius Jucius, Brigita Abakevičienė, Asta Guobienė, and Mindaugas Andrulevičius. 2021. "Trilayer Composite System Based on SiO2, Thiol-Ene, and PEDOT:PSS. Focus on Stability after Thermal Treatment and Solar Irradiance" Polymers 13, no. 19: 3439. https://doi.org/10.3390/polym13193439
APA StyleLazauskas, A., Jucius, D., Abakevičienė, B., Guobienė, A., & Andrulevičius, M. (2021). Trilayer Composite System Based on SiO2, Thiol-Ene, and PEDOT:PSS. Focus on Stability after Thermal Treatment and Solar Irradiance. Polymers, 13(19), 3439. https://doi.org/10.3390/polym13193439