The Impact of Carbon Nanofibres on the Interfacial Properties of CFRPs Produced with Sized Carbon Fibres
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Carbon Fibres after Sizing CNFs
3.2. Wettability Assessment of CNF-Sized CFs
3.3. Nanomechanical Properties of the CFRPs
3.4. Push-Out Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farooq, U.; Teuwen, J.; Dransfeld, C. Toughening of Epoxy Systems with Interpenetrating Polymer Network (IPN): A Review. Polymers 2020, 12, 1908. [Google Scholar] [CrossRef] [PubMed]
- Florek, P.; Król, M.; Jeleń, P.; Mozgawa, W. Carbon Fiber Reinforced Polymer Composites Doped with Graphene Oxide in Light of Spectroscopic Studies. Materials 2021, 14, 1835. [Google Scholar] [CrossRef] [PubMed]
- Salahuddin, B.; Faisal, S.N.; Baigh, T.A.; Alghamdi, M.N.; Islam, M.S.; Song, B.; Zhang, X.; Gao, S.; Aziz, S. Carbonaceous Materials Coated Carbon Fibre Reinforced Polymer Matrix Composites. Polymers 2021, 13, 2771. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, X.; Semitekolos, D.; Charitidis, C.A.; Dong, H. Enhanced properties of PAN-derived carbon fibres and resulting composites by active screen plasma surface functionalisation. Plasma Process. Polym. 2020, 17, 1900252. [Google Scholar] [CrossRef] [Green Version]
- Corujeira Gallo, S.; Charitidis, C.; Dong, H. Surface functionalization of carbon fibers with active screen plasma. J. Vac. Sci. Technol. A 2017, 35, 021404. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Dragatogiannis, D.; Jagdale, P.; Rovere, M.; Rosso, C.; Tagliaferro, A.; Charitidis, C. Novel carbon fibers synthesis, plasma functionalization, and application to polymer composites. Express Polym. Lett. 2021, 15, 361–374. [Google Scholar] [CrossRef]
- Termine, S.; Trompeta, A.-F.A.; Dragatogiannis, D.A.; Charitidis, C.A. Novel CNTs grafting on carbon fibres through CVD: Investigation of epoxy matrix/fibre interface via nanoindentation. MATEC Web Conf. 2019, 304, 01014. [Google Scholar] [CrossRef]
- Zeng, L.; Liu, X.; Chen, X.; Soutis, C. π-π interaction between carbon fibre and epoxy resin for interface improvement in composites. Compos. Part B: Eng. 2021, 220, 108983. [Google Scholar] [CrossRef]
- Liu, Y.-t.; Li, L.; Wang, J.-p.; Fei, Y.-j.; Liu, N.-d.; Wu, G.-p. Effect of carbon nanotube addition in two sizing agents on interfacial properties of carbon fiber / polycarbonate composites. New Carbon Mater. 2021, 36, 639–648. [Google Scholar] [CrossRef]
- Han, B.; Yu, X.; Ou, J. Chapter 5—Sensing Properties of Self-Sensing Concrete. In Self-Sensing Concrete in Smart Structures; Han, B., Yu, X., Ou, J., Eds.; Butterworth-Heinemann: Oxford, UK, 2014; pp. 95–162. [Google Scholar] [CrossRef]
- Zhandarov, S.; Mäder, E. Characterization of fiber/matrix interface strength: Applicability of different tests, approaches and parameters. Compos. Sci. Technol. 2005, 65, 149–160. [Google Scholar] [CrossRef]
- Huang, S.; Fu, Q.; Yan, L.; Kasal, B. Characterization of interfacial properties between fibre and polymer matrix in composite materials—A critical review. J. Mater. Res. Technol. 2021, 13, 1441–1484. [Google Scholar] [CrossRef]
- Zhang, Z.; Gallo, S.C.; Li, X.; Dong, H.; Dragatogiannis, D.; Charitidis, C.A. Evaluation of the creep behaviour of the carbon fibre in an unidirectional pultruded reinforced composite using nano-indentation technique. Polym. Test. 2019, 80, 106091. [Google Scholar] [CrossRef]
- Corujeira Gallo, S.; Li, X.; Zhang, Z.; Charitidis, C.; Dong, H. Viscoelastic response of carbon fibre reinforced polymer during push-out tests. Compos. Part A Appl. Sci. Manuf. 2018, 112, 178–185. [Google Scholar] [CrossRef]
- Semitekolos, D.; Kainourgios, P.; Jones, C.; Rana, A.; Koumoulos, E.P.; Charitidis, C.A. Advanced carbon fibre composites via poly methacrylic acid surface treatment; surface analysis and mechanical properties investigation. Compos. Part B Eng. 2018, 155, 237–243. [Google Scholar] [CrossRef]
- Hung, P.-y.; Lau, K.-t.; Fox, B.; Hameed, N.; Lee, J.H.; Hui, D. Surface modification of carbon fibre using graphene–related materials for multifunctional composites. Compos. Part B Eng. 2018, 133, 240–257. [Google Scholar] [CrossRef]
- De, S.; Fulmali, A.O.; Nuli, K.C.; Prusty, R.K.; Prusty, B.G.; Ray, B.C. Improving delamination resistance of carbon fiber reinforced polymeric composite by interface engineering using carbonaceous nanofillers through electrophoretic deposition: An assessment at different in-service temperatures. J. Appl. Polym. Sci. 2021, 138, 50208. [Google Scholar] [CrossRef]
- An, F.; Lu, C.; Li, Y.; Guo, J.; Lu, X.; Lu, H.; He, S.; Yang, Y. Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite. Mater. Des. 2012, 33, 197–202. [Google Scholar] [CrossRef]
- Karakassides, A.; Ganguly, A.; Tsirka, K.; Paipetis, A.S.; Papakonstantinou, P. Radially Grown Graphene Nanoflakes on Carbon Fibers as Reinforcing Interface for Polymer Composites. ACS Appl. Nano Mater. 2020, 3, 2402–2413. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.L.; Gao, B.; Ma, Q.H.; Zhang, J.; Cui, H.Z.; Liu, L. Directly grafting graphene oxide onto carbon fiber and the effect on the mechanical properties of carbon fiber composites. Mater. Des. 2016, 93, 364–369. [Google Scholar] [CrossRef]
- Dong, J.; Jia, C.; Wang, M.; Fang, X.; Wei, H.; Xie, H.; Zhang, T.; He, J.; Jiang, Z.; Huang, Y. Improved mechanical properties of carbon fiber-reinforced epoxy composites by growing carbon black on carbon fiber surface. Compos. Sci. Technol. 2017, 149, 75–80. [Google Scholar] [CrossRef]
- Hong, S.; Minary-Jolandan, M.; Naraghi, M. Controlling the wettability and adhesion of carbon fibers with polymer interfaces via grafted nanofibers. Compos. Sci. Technol. 2015, 117, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, J.D.; Rodriguez, A.J.; Guzman, M.E.; Lim, C.-S.; Minaie, B. Effects of electrophoretically deposited carbon nanofibers on the interface of single carbon fibers embedded in epoxy matrix. Carbon 2011, 49, 2750–2759. [Google Scholar] [CrossRef] [Green Version]
Code | Surfactant | % Sizing | % Filler in Sizing | CFRPs VCF (%) |
---|---|---|---|---|
T700 | - | - | - | 51 |
U1F1 | BS20 | 2.4 | 1% CNF | 56 |
U5F1 | BS20 | 1.4 | 5% CNF | 51 |
U10F1 | BS20 | 1.8 | 10% CNF | 56 |
Code | Droplet Radius (μm) | Contact Angle (deg) | Results |
---|---|---|---|
T700 | 52.6 ± 5.4 | 114.8 ± 2.3 | Reference Value |
U1F1 | 44.3 ± 9.2 | 163.9 ± 7.8 | Highly Improved |
U5F1 | 58.1 ± 3.6 | 120.3 ±3.6 | Slightly improved |
U10F1 | 45.2 ± 7.2 | 127.3 ± 5.2 | Improved |
Nano Inclusions | Method | IFSS Increase | Potential Issues |
---|---|---|---|
CNTs | Dip-coating [16] and Electphoretic deposition [17] CVD [18] Sizing (0.1%CNT) [9] | 14–33% 94% 97.6% | Agglomeration, dispersion issue, and solution damage to CFs Thermal degradation and catalyst diffusion Agglomeration |
Graphene nanoplates | Microwave enhanced plasma CVD [19] | 101.5% | High-temperature treatment (600 °C) and vacuum required |
Graphene oxide | Chemical Grafting [20], Electrophoretic deposition and dip coating [16] | 11–69.9% | Exposure to an electric field in solution→reduction in CFs strength |
Carbon black | CVD at 1000 °C [21] | 44% | Thermal degradation and high temperature required. |
CNFs | Electro-spinning grafting [22] O-CNFs by Electrophoretic deposition (EPD) [23] | 48% | Hybridization and exposure to an electric field in solution could damage the CFs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Li, X.; Jestin, S.; Termine, S.; Trompeta, A.-F.; Araújo, A.; Santos, R.M.; Charitidis, C.; Dong, H. The Impact of Carbon Nanofibres on the Interfacial Properties of CFRPs Produced with Sized Carbon Fibres. Polymers 2021, 13, 3457. https://doi.org/10.3390/polym13203457
Zhang Z, Li X, Jestin S, Termine S, Trompeta A-F, Araújo A, Santos RM, Charitidis C, Dong H. The Impact of Carbon Nanofibres on the Interfacial Properties of CFRPs Produced with Sized Carbon Fibres. Polymers. 2021; 13(20):3457. https://doi.org/10.3390/polym13203457
Chicago/Turabian StyleZhang, Zhenxue, Xiaoying Li, Simon Jestin, Stefania Termine, Aikaterini-Flora Trompeta, Andreia Araújo, Raquel M. Santos, Costas Charitidis, and Hanshan Dong. 2021. "The Impact of Carbon Nanofibres on the Interfacial Properties of CFRPs Produced with Sized Carbon Fibres" Polymers 13, no. 20: 3457. https://doi.org/10.3390/polym13203457
APA StyleZhang, Z., Li, X., Jestin, S., Termine, S., Trompeta, A. -F., Araújo, A., Santos, R. M., Charitidis, C., & Dong, H. (2021). The Impact of Carbon Nanofibres on the Interfacial Properties of CFRPs Produced with Sized Carbon Fibres. Polymers, 13(20), 3457. https://doi.org/10.3390/polym13203457