Design and Evaluation of Losartan Potassium Effervescent Floating Matrix Tablets: In Vivo X-ray Imaging and Pharmacokinetic Studies in Albino Rabbits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formulation of Effervescent Floating LP Tablets
2.3. Post-Compression Parameter Evaluation
2.4. Characterization of the Optimized Formulation
2.5. In Vitro Floating Behavior Studies (Buoyancy Test)
2.6. Swelling Index (SI) or Water Uptake (WU) Studies
2.7. In Vitro Drug Dissolution/Release Studies
2.8. Drug Release Kinetics
2.9. In Vivo Studies
2.9.1. Evaluation of Gastric Retention Using X-ray Imaging in Rabbits
2.9.2. In Vivo Pharmacokinetic Studies of LP Tablets
2.9.3. Determination of LP in Rabbit Plasma Samples
2.9.4. Pharmacokinetic Parameters
2.10. Stability Studies
2.11. Statistical Analysis
3. Results and Discussion
3.1. Pre-Compression Parameters
3.2. Post-Compression Parameters
3.3. FTIR Spectra
3.4. SEM Study
3.5. DSC Evaluation
3.6. In Vitro Buoyancy Studies
3.7. Swelling Index Study
3.8. In Vitro Drug Release
3.9. Drug Release Kinetics
3.10. X-ray Imaging
3.11. In Vivo Pharmacokinetic Studies
3.12. Stability Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, B.N.; Kim, K.H. Floating drug delivery systems: An approach to oral controlled drug delivery via gastric retention . J. Control. Release 2000, 63, 235–259. [Google Scholar] [CrossRef]
- Maroni, A.; Zema, L.; Curto, M.D.D.; Loreti, G.; Gazzaniga, A. Oral pulsatile delivery: Rationale and chronopharmaceutical formulations. Int. J. Pharm. 2010, 398, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lopes, C.M.; Bettencourt, C.; Rossi, A.; Buttini, F.; Barata, P. Overview on gastroretentive drug delivery systems for improving drug bioavailability. Int. J. Pharm. 2016, 510, 144–158. [Google Scholar] [CrossRef] [PubMed]
- Rahamathulla, M.; Hani, U.; Alqahtani, A.; Gangadharappa, H.V.; Yasmin Begum, M.; Jafar, M.; Osmani, R.A.M.; Chidambaram, K.; Moin, A.; Shankar, S.J. 23 Factorial design and optimization of effervescent floating matrix tablet of neratinib. J. Pharm. Innov. 2021, 16, 528–536. [Google Scholar] [CrossRef]
- Huh, H.W.; Na, Y.G.; Kang, H.C.; Kim, M.; Han, M.; Pham, T.M.A.; Lee, H.; Baek, J.S.; Lee, H.K.; Cho, C.W. Novel self-floating tablet for enhanced oral bioavailability of metformin based on cellulose. Int. J. Pharm. 2021, 592, 120113. [Google Scholar]
- Rahamathulla, M.; Alam, M.D.; Hani, U.; Ibrahim, Q.; Alhamhoom, Y. Development and in vitro evaluation of effervescent floating matrix tablet of neritinib: An anticancer drug. Pak. J. Pharm. Sci. 2021, 34, 1297–1303. [Google Scholar]
- Eberle, V.A.; Schoelkopf, J.; Gane, P.A.C.; Alles, R.; Huwyler, J.; Puchkov, M. Floating gastroretentive drug delivery systems: Comparison of experimental and simulated dissolution profiles and floatation behavior. Eur. J. Pharm. Sci. 2014, 58, 34–43. [Google Scholar] [CrossRef]
- Teaima, M.; Hamid, M.M.A.; Shoman, N.A.; Jasti, B.R.; El-Nabarawi, M.A. Promising swellable floating bupropion tablets: Formulation, in vitro/in vivo evaluation and comparative pharmacokinetic study in human volunteers. Drug Des. Dev. Ther. 2020, 14, 2741–2757. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Niu, J.; Li, Q.; Li, J.; Chen, X.; Ren, Y.; Wu, G.; Liu, Y.; Shi, Y. Development and evaluation of a new gastroretentive drug delivery system: Nanomicelles-loaded floating mucoadhesive beads. J. Drug Deliv. Sci. Technol. 2019, 51, 485–492. [Google Scholar] [CrossRef]
- Hwang, K.M.; Nguyen, T.T.; Seok, S.H.; Jo, H.I.; Cho, C.H.; Hwang, K.M.; Kim, J.Y.; Park, C.W.; Rhee, Y.S.; Park, E.S. Swellable and porous bilayer tablet for gastroretentive drug delivery: Preparation and in vitro-in vivo evaluation. Int. J. Pharm. 2019, 572, 118783. [Google Scholar] [CrossRef]
- Atyabi, F.; Sharma, H.L.; Mohammad, H.A.H.; Fell, T. Controlled drug release from coated floating ion exchange resin beads. J. Control. Release 1996, 42, 25–28. [Google Scholar] [CrossRef]
- Alladi, K.K.; Suram, R.; Bela, M.; Kiran, S.; Ramesh, V.; Narendera, Y. Formulation and characterization of clarithromycin controlled release bioadhesive tablets. J. Chem. Pharm. Res. 2011, 3, 684–690. [Google Scholar]
- Rahamathulla, M.; Saisivam, S.; Gangadharappa, H.V. Development of valsartan floating matrix tablets using low density polypropylene foam powder: In vitro and in vivo evaluation. AAPS PharmSciTech 2019, 20, 35. [Google Scholar] [CrossRef]
- Matharu, A.S.; Motto, M.G.; Patel, M.R.; Simonelli, A.P.; Dave, R.H. Evaluation of hydroxypropyl methylcellulose matrix systems as swellable gastro-retentive drug delivery systems. J. Pharm. Sci. 2011, 100, 150–163. [Google Scholar] [CrossRef]
- Cargill, R.; Caldwell, L.J.; Engle, K.; Fix, J.A.; Porter, P.A.; Gardner, C.R. Controlled gastric emptying. Effects of physical properties on gastric residence times of nondisintegrating geometric shapes in beagle dogs. Pharm. Res. 1988, 5, 533–536. [Google Scholar] [CrossRef]
- Kerdsakundee, N.; Mahattanadul, S.; Wiwattanapatapee, R. Development and evaluation of gastroretentive raft forming systems incorporating curcumin-Eudragit® EPO solid dispersions for gastric ulcer treatment. Eur. J. Pharm. Biopharm. 2015, 94, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Hani, U.; Osmani, R.A.M.; Alqahtani, A.; Ghazwani, M.; Rahamathulla, M.; Almordy, S.A.; Alsaleh, H.A. 23 Full factorial design for formulation and evaluation of floating oral in situ gelling system of piroxicam. J. Pharm. Innov. 2021, 16, 528–536. [Google Scholar] [CrossRef]
- Moen, M.D.; Waqstaff, A.J. Losartan: A review of its use in stroke risk reduction in patients with hypertension and left ventricular hypertrophy. Drugs 2005, 65, 2657–2674. [Google Scholar] [CrossRef] [PubMed]
- Saisivam, S.; Rahamathulla, M.; Shakeel, F. Development of floating matrix tablets of losartan potassium: In vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol. 2013, 23, 611–617. [Google Scholar] [CrossRef]
- Gangadharappa, H.V.; Rahamath-Ulla, M.; Pramod-Kumar, T.M.; Shakeel, F. Floating drug delivery system of verapamil hydrochloride using karaya gum and HPMC. Clin. Res. Regul. Aff. 2010, 27, 13–20. [Google Scholar] [CrossRef]
- Sapavatu, S.N.; Jadi, R.K. Formulation development and characterization of gastroretentive drug delivery systems of loratadine. Int. J. Appl. Pharm. 2019, 11, 91–99. [Google Scholar] [CrossRef]
- Roy, S.K.; Das, P.; Mondal, A.; Mandal, A.; Kuotsu, K. Design, formulation and evaluation of multiparticulate time programmed system of ramipril for pulsed release: An approach in the management of early morning surge in blood pressure. J. Drug Deliv. Sci. Technol. 2021, 62, 102344. [Google Scholar] [CrossRef]
- Barba, A.A.; Dalmoro, A.; Bochicchio, S.; Simone, V.D.; Caccavo, D.; Iannone, M.; Lamberti, G. Engineering approaches for drug delivery systems production and characterization. Int. J. Pharm. 2020, 581, 119267. [Google Scholar] [CrossRef]
- Ulla, M.R.; Saisivam, S. Floating matrix tablet of losartan potassium by using hydrophilic swelling polymer and natural gum. Turk. J. Pharm. Sci. 2013, 10, 435–446. [Google Scholar]
- Abou Youssef, N.A.H.; Kassem, A.A.; El-Massik, M.A.E.; Boraie, N.A. Development of gastroretentive metronidazole floating raft system for targeting Helicobacter pylori. Int. J. Pharm. 2015, 486, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Hayat, U.; Wang, H.J.; Wang, J.Y. Preparation and evaluation of captopril loaded gastro-retentive zein based porous floating tablets. Int. J. Pharm. 2020, 579, 119185. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, F.; Iqbal, M.; Ezzeldin, E. Bioavailability enhancement and pharmacokinetic profile of an anticancer drug ibrutinib by self-nanoemulsifying drug delivery system. J. Pharm. Pharmacol. 2016, 68, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Note for Guidance on Stability Testing, Stability Testing of New Drug Substances and Products. Available online: http://www.ich.org/cache/compo/363-272-1.html (accessed on 20 August 2006).
- ICH Harmonized Tripartite Guidelines. Stability testing of new drug substances and products. Q1A (R2). Fed. Reg. 2003, 68, 65717–65718. [Google Scholar]
- Srikanth, M.V.; Rao, N.S.; Sunil, S.A.; Ram, B.J.; Kolapalli, V.R.M. Statistical design and evaluation of a propranolol HCl gastric floating tablet. Acta Pharm. Sin. B 2012, 2, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Tadros, M.I. Controlled-release effervescent floating matrix tablets of ciprofloxacin hydrochloride: Development, optimization and in vitro-in vivo evaluation in healthy human volunteers. Eur. J. Pharm. Biopharm. 2010, 74, 332–339. [Google Scholar] [CrossRef]
- Saisivam, S.; Ulla, M.R. Effect of sodium bicarbonate on the properties of losartan potassium floating tablet. Int. J. Pharm. Sci. 2011, 3, 1665–1669. [Google Scholar]
- Lin, H.L.; Chen, L.C.; Cheng, W.T.; Cheng, W.J.; Ho, H.O.; Sheu, M.T. Preparation and characterization of a novel swellable and floating gastroretentive drug delivery system (sfGRDDS) for enhanced oral bioavailability of nilotinib. Pharmaceutics 2020, 12, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamani, P.L.; Ruiz-Caro, R.; Veiga, M.D. Matrix tablets: The effect of hydroxypropyl methylcellulose/anhydrous dibasic calcium phosphate ratio on the release rate of a water-soluble drug through the gastrointestinal tract I. In vitro tests. AAPS PharmSciTech 2012, 13, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- Prajapati, P.H.; Nakum, V.V.; Patel, C.N. Formulation and evaluation of floating matrix tablet of stavudine. Int. J. Pharm. Investig. 2012, 2, 83–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streubel, A.; Siepmann, J.; Bodmeier, R. Floating matrix tablets based on low density foam powder: Effects of formulation and processing parameters on drug release. Eur. J. Pharm. Sci. 2003, 18, 37–45. [Google Scholar] [CrossRef]
Batch Code | LP | HPMC-90 SH 15,000 | KG | MCC | SB | MS | LAC | TOTAL (mg) |
---|---|---|---|---|---|---|---|---|
F1 | 50 | 150 | - | 15 | 36 | 3 | 46 | 300 |
F2 | 50 | 125 | 25 | 15 | 36 | 3 | 46 | 300 |
F3 | 50 | 100 | 50 | 15 | 36 | 3 | 46 | 300 |
F4 | 50 | 50 | 100 | 15 | 36 | 3 | 46 | 300 |
F5 | 50 | - | 150 | 15 | 36 | 3 | 46 | 300 |
Batch Code | Bulk Density (g mL−1) ± SD * | Tapped Density * (g mL−1) ± SD | Hauser Ratio | Carr’s Index * (%) | Angle of Repose ± SD * |
---|---|---|---|---|---|
F1 | 0.566 ± 0.23 | 0.625 ± 0.015 | 1.10 | 9.44 ± 0.55 | 21.80 ± 0.29 |
F2 | 0.576 ± 0.35 | 0.625 ± 0.021 | 1.13 | 11.65 ± 1.0 | 22.58 ± 0.34 |
F3 | 0.576 ± 0.19 | 0.666 ± 0.014 | 1.15 | 13.5 ± 0.83 | 23.02 ± 0.73 |
F4 | 0.588 ± 0.38 | 0.652 ± 0.021 | 1.12 | 9.81 ± 0.91 | 23.74 ± 0.61 |
F5 | 0.612 ± 0.06 | 0.666 ± 0.014 | 1.08 | 8.10 ± 0.27 | 20.80 ± 0.17 |
Batch Code | Variation of Weight * (%) | Hardness * (N) | Thickness * (mm) | Friability * (%) | Content Uniformity * (%) |
---|---|---|---|---|---|
F1 | 2.32 ± 0.19 | 55 ± 0.24 | 4.10 ± 0.92 | 0.76 ± 0.08 | 100.19 ± 0.14 |
F2 | 2.33 ± 0.12 | 49 ± 0.33 | 4.20 ± 0.33 | 0.92 ± 0.03 | 99.29 ± 0.33 |
F3 | 1.66 ± 0.06 | 53 ± 0.83 | 4.10 ± 0.89 | 0.79 ± 0.08 | 100.17 ± 0.64 |
F4 | 1.99 ± 0.02 | 53 ± 0.68 | 4.00 ± 0.92 | 0.88 ± 0.02 | 99.54 ± 0.12 |
F5 | 2.33 ± 0.18 | 52 ± 0.92 | 4.20 ± 0.28 | 0.81 ± 0.07 | 102.21 ± 0.89 |
Batch Code | Floating Lag Time * (s) | Swelling Index * (%) | Total Floating Time (h) |
---|---|---|---|
F1 | 33 ± 3 | 173.32 ± 4.70 | >24 |
F2 | 40 ± 3 | 462.18 ± 5.50 | >24 |
F3 | 16 ± 2 | 488.09 ± 4.80 | >24 |
F4 | 57 ± 2 | 640.23 ± 7.70 | >24 |
F5 | 49 ± 1 | 534.15 ± 6.30 | >24 |
Batch Code | Korsmeyer–Peppas | Matrix | Hixson–Crowley | 1st-Order | Zero-Order | n | Mechanism of Drug Release | Release Kinetics | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | k | R2 | k | R2 | k | R2 | k | R2 | k | ||||
F1 | 0.989 | 8.207 | 0.967 | 18.319 | 0.992 | 10.027 | 0.991 | 10.119 | 0.847 | 14.88 | 0.8061 | Non-Fickian | Hixson–Crowley |
F2 | 0.997 | 10.01 | 0.995 | 10.018 | 0.995 | 10.018 | 0.990 | 10.069 | 0.962 | 3.834 | 1.0545 | Super case-II transport | Hixson–Crowley |
F3 | 0.995 | 9.084 | 0.997 | 15.761 | 0.977 | 10.022 | 0.988 | 10.091 | 0.931 | 4.329 | 0.7366 | Non-Fickian | Matrix |
F4 | 0.994 | 6.281 | 0.927 | 14.590 | 0.984 | 10.022 | 0.973 | 10.091 | 0.978 | 4.137 | 0.8597 | Non-Fickian | Peppas |
F5 | 0.985 | 9.127 | 0.882 | 26.290 | 0.874 | 10.072 | 0.979 | 13.159 | 0.868 | 6.785 | 1.0032 | case-II transport | Peppas |
Parameters | Oral Solution | F3 |
---|---|---|
Cmax (ng mL−1) | 298.4 ± 12.45 | 148.4 ± 15.86 |
Tmax (h) | 1.5 ± 0.10 | 4.1 ± 0.35 |
T1/2 (h) | 2.38 ± 0.32 | 3.45 ± 0.25 |
Kel (h) | 0.34 ± 0.05 | 0.27 ± 0.07 |
AUC(0-t)(ng.h mL−1) | 928.12 ± 51.67 | 1382.40 ± 112.23 |
MRT (h) | 4.223 ± 0.07 | 18.92 ± 0.21 |
Stability Condition | Sampling Interval (Months) | Physical Appearance | Drug Content (%) |
---|---|---|---|
25 ± 2 °C/60 ± 5% RH | 0 | No change | 100.10 ± 0.04 |
3 | No change | 99.91 ± 0.03 | |
6 | No change | 99.73 ± 0.02 | |
12 | No change | 99.39 ± 0.05 | |
30 ± 2 °C/65 ± 5% RH | 0 | No change | 100.10 ± 0.08 |
3 | No change | 99.84 ± 0.06 | |
6 | No change | 99.57 ± 0.04 | |
12 | No change | 98.98 ± 0.09 | |
40 ± 2 °C/75 ± 5% RH | 0 | No change | 100.10 ± 0.09 |
3 | No change | 99.38 ± 0.07 | |
6 | No change | 98.69 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahamathulla, M.; Saisivam, S.; Alshetaili, A.; Hani, U.; Gangadharappa, H.V.; Alshehri, S.; Ghoneim, M.M.; Shakeel, F. Design and Evaluation of Losartan Potassium Effervescent Floating Matrix Tablets: In Vivo X-ray Imaging and Pharmacokinetic Studies in Albino Rabbits. Polymers 2021, 13, 3476. https://doi.org/10.3390/polym13203476
Rahamathulla M, Saisivam S, Alshetaili A, Hani U, Gangadharappa HV, Alshehri S, Ghoneim MM, Shakeel F. Design and Evaluation of Losartan Potassium Effervescent Floating Matrix Tablets: In Vivo X-ray Imaging and Pharmacokinetic Studies in Albino Rabbits. Polymers. 2021; 13(20):3476. https://doi.org/10.3390/polym13203476
Chicago/Turabian StyleRahamathulla, Mohamed, Srinivasan Saisivam, Abdullah Alshetaili, Umme Hani, Hosahalli Veerabhadrappa Gangadharappa, Sultan Alshehri, Mohammed M. Ghoneim, and Faiyaz Shakeel. 2021. "Design and Evaluation of Losartan Potassium Effervescent Floating Matrix Tablets: In Vivo X-ray Imaging and Pharmacokinetic Studies in Albino Rabbits" Polymers 13, no. 20: 3476. https://doi.org/10.3390/polym13203476
APA StyleRahamathulla, M., Saisivam, S., Alshetaili, A., Hani, U., Gangadharappa, H. V., Alshehri, S., Ghoneim, M. M., & Shakeel, F. (2021). Design and Evaluation of Losartan Potassium Effervescent Floating Matrix Tablets: In Vivo X-ray Imaging and Pharmacokinetic Studies in Albino Rabbits. Polymers, 13(20), 3476. https://doi.org/10.3390/polym13203476