Excellent Thermally Conducting Ni Plating Graphite Nanoplatelets/Poly(phenylene sulfone) Composites for High-Performance Electromagnetic Interference Shielding Effectiveness
Abstract
:1. Introduction
2. Materials and Fabrication
2.1. Materials
2.2. Preparation of GnPs@Ni Hybrids
2.3. Preparation of GnPs@Ni/PPSU Composites
2.4. Characterization
3. Results and Discussion
3.1. Chemical Composition of GnPs@Ni-MWCNTs Hybrid Filler
3.2. Morphology of GnPs@Ni-MWCNTs Hybrid Filler
3.3. Thermal Conductivity of GnPs@Ni/PPSU Composites
3.4. EMI Shielding Performance of GnPs@Ni-MWCNTs/PPSU Composites
3.5. Thermal Analysis of the GnPs@Ni-MWCNTs/PPSU Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, M.; Feng, Y.; Ji, T.; Feng, W. Enhancement of cross-plane thermal conductivity and mechanical strength via vertical aligned carbon nanotube@graphite architecture. Carbon 2016, 104, 157–168. [Google Scholar] [CrossRef]
- Balandin, A.A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581. [Google Scholar] [CrossRef] [Green Version]
- Liang, Q.; Yao, X.; Wang, W.; Liu, Y.; Wong, C.P. A three-dimensional vertically aligned functionalized multi-layer graphene architecture: An approach for graphene -based thermal interfacial material. ACS Nano 2011, 5, 2392–2401. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Zhang, H.B.; Liu, J.; Xie, X.; Yang, R.; Li, Y.; Hong, S.; Yu, Z.Z. Highly conductive transition metal carbide/carbonitride (MXene)@ polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 2017, 27, 1702807. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, G.; Gao, Q.; Tang, M.; Ma, Z.; Qin, J.; Wang, M.; Kim, J.-K. Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance. Chem. Eng. J. 2020, 379. [Google Scholar] [CrossRef]
- Badakhsh, A.; Lee, Y.-M.; Rhee, K.Y.; Park, C.W.; An, K.-H.; Kim, B.-J. Improvement of thermal, electrical and mechanical properties of composites using a synergistic network of length controlled-CNTs and graphene nanoplatelets. Compos. Part B Eng. 2019, 175, 107075. [Google Scholar] [CrossRef]
- Shen, X.; Wang, Z.Y.; Wu, Y.; Liu, X.; He, Y.B.; Zheng, Q.B.; Yang, Q.H.; Kang, F.Y.; Kim, J.K. A three-dimensional multilayer graphene web for polymer nano-composites with exceptional transport properties and fracture resistance. Mater. Horiz. 2018, 5, 275–284. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Fal′ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef]
- Pan, C.; Kou, K.; Zhang, Y.; Li, Z.; Wu, G. Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles. Compos. Part B Eng. 2018, 153, 1–8. [Google Scholar] [CrossRef]
- Yuan, H.-C.; Lee, C.-Y.; Tai, N.-H. Extremely high thermal conductivity of nanodiamond-polydopamine/thin-layer graphene composite films. Compos. Sci. Technol. 2018, 167, 313–322. [Google Scholar] [CrossRef]
- Tang, X.-H.; Li, J.; Wang, Y.; Weng, Y.-X.; Wang, M. Controlling distribution of multi-walled carbon nanotube on surface area of Poly(ε-caprolactone) to form sandwiched structure for high-efficiency electromagnetic interference shielding. Compos. Part B Eng. 2020, 196, 108121. [Google Scholar] [CrossRef]
- Huang, X.Y.; Zhi, C.Y.; Jiang, P.K.; Dmitri, G.; Yoshio, B.; Toshikatsu, T. Polyhedral Oligosilsesquioxane-Modified Boron Nitride Nanotube Based Epoxy Nanocomposites: An Ideal Dielectric Material with High Thermal Conductivity. Adv. Funct. Mater. 2013, 23, 1824–1831. [Google Scholar] [CrossRef]
- Zhou, W.; Zuo, J.; Ren, W. Thermal conductivity and dielectric properties of Al/PVDF composites. Compos. Part A Appl. Sci. Manuf. 2012, 43, 658–664. [Google Scholar] [CrossRef]
- Rivière, L.; Lonjon, A.; Dantras, E.; Lacabanne, C.; Olivier, P.; Gleizes, N.R. Silver fillers aspect ratio influence on electrical and thermal conductivity in PEEK/Ag nanocomposites. Eur. Polym. J. 2016, 85, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Chen, G.; Zheng, L. Electroless deposition of silver particles on graphite nanosheets. Scr. Mater. 2008, 59, 1031–1034. [Google Scholar] [CrossRef]
- Xiao, W.; Lei, Y.; Xia, Z.; Chen, X.; Han, Y.; Nie, J. Effect of silver plating time on the properties of conductive silicone rubber filled with silver-coated carbonyl nickel powder. J. Alloys Compd. 2017, 724, 24–28. [Google Scholar] [CrossRef]
- Palaniappa, M.; Babu, G.V.; Balasubramanian, K. Electroless nickel–phosphorus plating on graphite powder. Mater. Sci. Eng. A 2007, 471, 165–168. [Google Scholar] [CrossRef]
- Li, L.; Jin, Y.; Wang, Z.Y.; He, Q.X.; Chen, R.; Wang, J.T.; Wu, H.; Zhao, X.; Mu, J.X. Preparation and characterisation of nickel-plated carbon fi-bre/polyether ether ketone composites with high electromagnetic shielding and high thermal conductivity. Colloid Polym. Scince 2019, 297, 967–977. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Li, L.; Qi, S. Preparation and microwave absorbing properties of nickel-coated carbon fiber with polyani-line via in situ polymerization. J. Mater. Sci. Mater. Electron. 2016, 27, 5607. [Google Scholar] [CrossRef]
- Huang, X.; Qi, X.Y.; Freddy, B.; Hang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, K.; Luo, F.; Lu, M.; Xiao, F.; Du, X.; Zhang, S.; Liang, L.; Lu, M. Significantly enhanced thermal conductivity in polyvinyl alcohol composites enabled by dopamine modified graphene nanoplatelets. Compos. Part A Appl. Sci. Manuf. 2018, 117, 134–143. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Y.; Dai, W.; Wu, Y.; Wang, M.; Hou, X.; Li, H.; Jiang, N.; Lin, C.T.; Yu, J.H. Anisotropic thermal conductive properties of cigarette fil-ter-templated graphene/epoxy composites. RSC Adv. 2018, 8, 1065–1070. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Gu, M. Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetra-mine-functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide. Compos. Part A 2010, 41, 215–221. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.; Guan, X.; Shi, Y.; Wu, K.; Liang, L.; Shi, J.; Lu, M. Synthesis of pyridine-containing diamine and properties of its polyi-mides and polyimide/hexagonal boron nitride composite films. Compos. Sci. Technol. 2017, 152, 165–172. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, Y.; Duan, H.; Gao, J.; Yan, D.-X.; Zhao, G.; Liu, Y. Flexible and highly conductive sandwich nylon/nickel film for ultra-efficient electromagnetic interference shielding. Appl. Surf. Sci. 2018, 455, 856–863. [Google Scholar] [CrossRef]
- Li, J.; Wang, A.; Qin, J.; Zhang, H.; Ma, Z.; Zhang, G. Lightweight polymethacrylimide@copper/nickel composite foams for electromagnetic shielding and monopole antennas. Compos. Part A Appl. Sci. Manuf. 2020, 140, 106144. [Google Scholar] [CrossRef]
- Su, Z.; Wang, H.; Tian, K.; Huang, W.; Xiao, C.; Guo, Y.; He, J.; Tian, X. The combination of π-π interaction and covalent bonding can synergistically strengthen the flexible electrical insulating nanocomposites with well adhesive properties and thermal conductivity. Compos. Sci. Technol. 2018, 155, 1–10. [Google Scholar] [CrossRef]
- Su, Z.; Wang, H.; Tian, K.; Huang, W.; Guo, Y.; He, J.; Tian, X. Multifunctional anisotropic flexible cycloaliphatic epoxy resin nanocomposites reinforced by aligned graphite flake with non-covalent biomimetic functionalization. Compos. Part A Appl. Sci. Manuf. 2018, 109, 472–480. [Google Scholar] [CrossRef]
- Yuan, G.; Li, X.; Dong, Z.; Westwood, A.; Cui, Z.; Cong, Y.; Du, H.; Kang, F. Graphite blocks with preferred orientation and high thermal conductivity. Carbon 2012, 50, 175–182. [Google Scholar] [CrossRef]
- Zhou, S.X.; Zhu, Y.; Du, H.D.; Li, B.H.; Kang, F.-Y. Preparation of oriented graphite/polymer composite sheets with high thermal conductivities by tape casting. New Carbon Mater. 2012, 27, 241–249. [Google Scholar] [CrossRef]
- Tanimoto, M.; Yamagata, T.; Miyata, K.; Ando, S. Anisotropic Thermal Diffusivity of Hexagonal Boron Nitride-Filled Polyimide Films: Effects of Filler Particle Size, Aggregation, Orientation, and Polymer Chain Rigidity. ACS Appl. Mater. Interfaces 2013, 5, 4374–4382. [Google Scholar] [CrossRef] [PubMed]
- He, Q.X.; Chen, R.; Li, S.; Wang, Z.Y.; Wen, F.Y.; Wang, B.H.; Mu, J.X. Excellent thermally conducting modified graphite nanoplatelets and MWCNTs/poly(phenylene sulfone) composites for high-performance electromagnetic interference shielding effectiveness. Compos. Part A 2021, 143, 106280. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, Y.; Min, P.; Sui, G. BN@PPS core-shell structure particles and their 3D segregated architecture composites with high thermal conductivities. Compos. Sci. Technol. 2017, 144, 63–69. [Google Scholar] [CrossRef]
- Fu, C.; Yan, C.; Ren, L.; Zeng, X.; Du, G.; Sun, R.; Xu, J.; Wong, C.-P. Improving thermal conductivity through welding boron nitride nanosheets onto silver nanowires via silver nanoparticles. Compos. Sci. Technol. 2019, 177, 118–126. [Google Scholar] [CrossRef]
- Kumar, P.; Shahzad, F.; Hong, S.M.; Koo, C.M. A flexible sandwich graphene/silver nanowires/graphene thin film for high-performance electromagnetic interference shielding. RSC Adv. 2016, 6, 101283–101287. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Hua, W.; Zhang, A.; Bao, J. Light-Weight Silver Plating Foam and Carbon Nanotube Hybridized Epoxy Composite Foams with Exceptional Conductivity and Electromagnetic Shielding Property. ACS Appl. Mater. Interfaces 2016, 8, 24131–24142. [Google Scholar] [CrossRef]
- Liu, S.; Qin, S.H.; Song, P.A.; Jiang, Y.; Wang, H. Lightweight high-performance carbon-polymer nanocomposites for electromagnetic inter-ference shielding. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106376. [Google Scholar] [CrossRef]
- Lee, Y.; Liu, Y.; Park, M.; Kim, H.Y. Ultrahigh electromagnetic interference shielding performance of lightweight, flexible, and highly conductive copper-clad carbon fiber nonwoven fabrics. J. Mater. Chem. C 2017, 5, 7853–7861. [Google Scholar] [CrossRef]
- Xue, Y.; Li, X.; Wang, H.; Zhao, F.; Zhang, D.; Chen, Y. Improvement in thermal conductivity of through-plane rubber composites. Mater. Des. 2019, 165, 2482–2493. [Google Scholar] [CrossRef]
- Wu, K.; Chang, Y.; Yang, C.; Gung, Y.; Yang, F. Synthesis, infrared stealth and corrosion resistance of organically modified silicate–polyaniline/carbon black hybrid coatings. Eur. Polym. J. 2009, 45, 2821–2829. [Google Scholar] [CrossRef]
- Yousefi, N.; Sun, X.; Lin, X.; Shen, X.; Jia, J.; Zhang, B.; Tang, B.; Chan, M.; Kim, J.-K. Highly Aligned Graphene/Polymer Nanocomposites with Excellent Dielectric Properties for High-Performance Electromagnetic Interference Shielding. Adv. Mater. 2014, 26, 5480–5487. [Google Scholar] [CrossRef] [PubMed]
C1 | C2 | |
---|---|---|
GnPs/PPSU | 1.76 | 1.24 |
GnPs@Ni/PPSU | 1.42 | 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Yang, T.; Cheng, L.; Mu, J. Excellent Thermally Conducting Ni Plating Graphite Nanoplatelets/Poly(phenylene sulfone) Composites for High-Performance Electromagnetic Interference Shielding Effectiveness. Polymers 2021, 13, 3493. https://doi.org/10.3390/polym13203493
Chen Z, Yang T, Cheng L, Mu J. Excellent Thermally Conducting Ni Plating Graphite Nanoplatelets/Poly(phenylene sulfone) Composites for High-Performance Electromagnetic Interference Shielding Effectiveness. Polymers. 2021; 13(20):3493. https://doi.org/10.3390/polym13203493
Chicago/Turabian StyleChen, Zhang, Ting Yang, Lin Cheng, and Jianxin Mu. 2021. "Excellent Thermally Conducting Ni Plating Graphite Nanoplatelets/Poly(phenylene sulfone) Composites for High-Performance Electromagnetic Interference Shielding Effectiveness" Polymers 13, no. 20: 3493. https://doi.org/10.3390/polym13203493
APA StyleChen, Z., Yang, T., Cheng, L., & Mu, J. (2021). Excellent Thermally Conducting Ni Plating Graphite Nanoplatelets/Poly(phenylene sulfone) Composites for High-Performance Electromagnetic Interference Shielding Effectiveness. Polymers, 13(20), 3493. https://doi.org/10.3390/polym13203493