Enhanced Solar Photocatalytic Reduction of Cr(VI) Using a (ZnO/CuO) Nanocomposite Grafted onto a Polyester Membrane for Wastewater Treatment
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals Required
2.2. Mercerization of Polyester Fabric
2.3. Fabrication of ZnO/CuO Nanocomposite on Polyester Fabric (ZnO/CuO/PF Membrane)
2.4. Characterization of Fabricated ZnO/CuO/PF Membrane
2.5. Evaluation of Concentration of Cr (VI) and Cr (III) by Complexation
Photocatalytic Reduction of Cr(VI) in Wastewater
2.6. Optimization of Operational Parameters by Response Surface Methodology
2.7. Solar Photocatalytic Treatment of Real Wastewater
3. Result and Discussion
3.1. Characterization of the ZnO/CuO/PF-Based PMR
3.1.1. Morphological Characterization of the ZnO/CuO/PF-Based PMR
3.1.2. Structural Characterization of ZnO/CuO Grafted on PMR
3.1.3. Optical Properties of ZnO/CuO Grafted onto the PMR
3.1.4. Thermal Stability of ZnO/CuO Grafted onto the PMR
3.2. Characterization of the ZnO/CuO/PF-Based PMR for Surface Functionalization
3.3. Solar Photocatalytic Reduction of Chromium by RSM
Optimization of Operational Parameters by Response Surface Methodology
3.4. Interactive Effects of Operational Variables of Solar Photocatalytic Reaction
3.4.1. Interactive Effect of Initial Concentration of Cr(VI) and Irradiation Time
3.4.2. Interactive Effect of Initial Concentration of Cr(VI) and pH
3.4.3. Interactive Effect of pH and Irradiation Time
3.5. Complexation of Cr(VI) and Cr(III) Complexes
3.6. Photocatalytic Reduction of Cr(VI) to Cr(III) in Real Wastewater
3.7. Reusability of ZnO/CuO/PF
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baruah, S.; Pal, K.S.; Dutta, J. Nanostructured zinc oxide for water treatment. Nanosci. Nanotechnol. Asia 2012, 2, 90–102. [Google Scholar] [CrossRef] [Green Version]
- Miranda-García, N.; Suárez, S.; Sánchez, B.; Coronado, J.; Malato, S.; Maldonado, M.I. Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Appl. Catal. B Environ. 2011, 103, 294–301. [Google Scholar] [CrossRef]
- Nagajyoti, P.; Lee, K.; Sreekanth, T. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Radhakrishnan, A.; Rejani, P.; Khan, J.S.; Beena, B. Effect of annealing on the spectral and optical characteristics of nano ZnO: Evaluation of adsorption of toxic metal ions from industrial waste water. Ecotoxicol. Environ. Saf. 2016, 133, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Noureen, S.; Shakoor, M.B.; Haroon, M.Y.; Rizwan, M.; Jilani, A.; Arif, M.S.; Khalil, U. Comparative evaluation of wheat straw and press mud biochars for Cr(VI) elimination from contaminated aqueous solution. Environ. Technol. Innov. 2020, 19, 101017. [Google Scholar] [CrossRef]
- Rai, V.; Vajpayee, P.; Singh, S.N.; Mehrotra, S. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci. 2004, 167, 1159–1169. [Google Scholar] [CrossRef]
- Ghani, A. Effect of chromium toxicity on growth, chlorophyll and some mineral nutrients of Brassica juncea L. Egypt. Acad. J. Biol. Sci. 2011, 2, 9–15. [Google Scholar]
- Sezgin, N.; Yalçın, A.; Köseoğlu, Y. MnFe2O4 nano spinels as potential sorbent for adsorption of chromium from industrial wastewater. Desalination Water Treat. 2016, 57, 16495–16506. [Google Scholar] [CrossRef]
- Zakria, H.S.; Othman, M.H.D.; Kamaludin, R.; Sheikh Abdul Kadir, S.H.; Kurniawan, T.A.; Jilani, A. Immobilization techniques of a photocatalyst into and onto a polymer membrane for photocatalytic activity. RSC Adv. 2021, 11, 6985–7014. [Google Scholar] [CrossRef]
- Zakria, H.S.; Othman, M.H.D.; Kamaludin, R.; Jilani, A. Study on the effect of air gap on physico-chemical and performance of PVDF hollow fibre membrane. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1142, 012014. [Google Scholar] [CrossRef]
- Tan, Y.; Chen, M.; Hao, Y. High efficient removal of Pb (II) by amino-functionalized Fe3O4 magnetic nano-particles. Chem. Eng. J. 2012, 191, 104–111. [Google Scholar] [CrossRef]
- Gehrke, I.; Geiser, A.; Somborn-Schulz, A. Innovations in nanotechnology for water treatment. Nanotechnol. Sci. Appl. 2015, 8, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohsin, M.; Bhatti, I.A.; Ashar, A.; Khan, M.W.; Farooq, M.U.; Khan, H.; Hussain, M.T.; Loomba, S.; Mohiuddin, M.; Zavabeti, A. Iron-doped zinc oxide for photocatalyzed degradation of humic acid from municipal wastewater. Appl. Mater. Today 2021, 23, 101047. [Google Scholar] [CrossRef]
- Inderyas, A.; Bhatti, I.; Ashar, A.; Ashraf, M.; Ghani, A.; Yousaf, M.; Mohsin, M.; Ahmad, M.; Rafique, S.; Masood, N. Synthesis of immobilized ZnO over polyurethane and photocatalytic activity evaluation for the degradation of azo dye under UV and solar light irardiation. Mater. Res. Express 2020, 7, 025033. [Google Scholar] [CrossRef]
- Ashar, A.; Iqbal, M.; Bhatti, I.A.; Ahmad, M.Z.; Qureshi, K.; Nisar, J.; Bukhari, I.H. Synthesis, characterization and photocatalytic activity of ZnO flower and pseudo-sphere: Nonylphenol ethoxylate degradation under UV and solar irradiation. J. Alloys Compd. 2016, 678, 126–136. [Google Scholar] [CrossRef]
- Shaheen, M.; Bhatti, I.A.; Ashar, A.; Mohsin, M.; Nisar, J.; Almoneef, M.M.; Iqbal, M. Synthesis of Cu-doped MgO and its enhanced photocatalytic activity for the solar-driven degradation of disperse red F3BS with condition optimization. Z. Für Phys. Chem. 2021, 235, 1395–1412. [Google Scholar] [CrossRef]
- Sherly, E.; Vijaya, J.J.; Kennedy, L.J. Visible-light-induced photocatalytic performances of ZnO–CuO nanocomposites for degradation of 2, 4-dichlorophenol. Chin. J. Catal. 2015, 36, 1263–1272. [Google Scholar] [CrossRef]
- Ishaq, T.; Yousaf, M.; Bhatti, I.A.; Ahmad, M.; Ikram, M.; Khan, M.U.; Qayyum, A. Photo-assisted splitting of water into hydrogen using visible-light activated silver doped g-C3N4 & CNTs hybrids. Int. J. Hydrogen Energy 2020, 45, 31574–31584. [Google Scholar]
- Jilani, A.; Othman, M.H.D.; Ansari, M.O.; Oves, M.; Hussain, S.Z.; Khan, I.U.; Abdel-wahab, M.S. Structural and optical characteristics, and bacterial decolonization studies on non-reactive RF sputtered Cu–ZnO@ graphene based nanoparticles thin films. J. Mater. Sci. 2019, 54, 6515–6529. [Google Scholar] [CrossRef]
- Mozia, S.; Tomaszewska, M.; Morawski, A.W. Photocatalytic membrane reactor (PMR) coupling photocatalysis and membrane distillation—Effectiveness of removal of three azo dyes from water. Catal. Today 2007, 129, 3–8. [Google Scholar] [CrossRef]
- Parveen, S.; Bhatti, I.; Ashar, A.; Javed, T.; Mohsin, M.; Hussain, M.; Khan, M.; Naz, S.; Iqbal, M. Synthesis, characterization and photocatalytic performance of iron molybdate (Fe2(MoO4)3) for the degradation of endosulfan pesticide. Mater. Express 2020, 7, 035016. [Google Scholar] [CrossRef]
- Leong, S.; Razmjou, A.; Wang, K.; Hapgood, K.; Zhang, X.; Wang, H. TiO2 based photocatalytic membranes: A review. J. Membr. Sci. 2014, 472, 167–184. [Google Scholar] [CrossRef]
- Byung-Wan, J.; Park, S.-K.; Cheol-Hwan, K. Mechanical properties of polyester polymer concrete using recycled polyethylene terephthalate. ACI Struct. J. 2006, 103, 219–225. [Google Scholar]
- Dhanasekaran, V.; Mahalingam, T. Physical properties evaluation of various substrates coated cupric oxide thin films by dip method. J. Alloys Compd. 2012, 539, 50–56. [Google Scholar] [CrossRef]
- Pathan, H.; Lokhande, C. Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bull. Mater. Sci. 2004, 27, 85–111. [Google Scholar] [CrossRef]
- Rousselle, M.; Nelson, M.; Hassenboehler, C., Jr.; Legendre, D., Jr. Liquid-ammonia and caustic mercerization of cotton fibers: Changes in fine structure and mechanical properties. Text. Res. J. 1976, 46, 304–310. [Google Scholar] [CrossRef]
- Jiménez-García, F.; Londoño-Calderón, C.; Espinosa-Arbeláez, D.; Del Real, A.; Rodríguez-García, M. Influence of substrate on structural, morphological and optical properties of ZnO films grown by SILAR method. Bull. Mater. Sci. 2014, 37, 1283–1291. [Google Scholar] [CrossRef]
- Jilani, A.; Rehman, G.U.; Ansari, M.O.; Othman, M.H.D.; Hussain, S.Z.; Dustgeer, M.R.; Darwesh, R. Sulfonated polyaniline-encapsulated graphene@graphitic carbon nitride nanocomposites for significantly enhanced photocatalytic degradation of phenol: A mechanistic study. New J. Chem. 2020, 44, 19570–19580. [Google Scholar] [CrossRef]
- Zewdu, F.; Amare, M. Determination of the level of hexavalent, trivalent, and total chromium in the discharged effluent of Bahir Dar tannery using ICP-OES and UV–Visible spectrometry. Cogent Chem. 2018, 4, 1534566. [Google Scholar] [CrossRef]
- Lace, A.; Ryan, D.; Bowkett, M.; Cleary, J. Chromium monitoring in water by colorimetry using optimised 1, 5-diphenylcarbazide method. Int. J. Environ. Res. Public Health 2019, 16, 1803. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, A.; Mishra, R. Speciation and determination of chromium in waters+. Chem. Speciat. Bioavailab. 1992, 4, 131–134. [Google Scholar] [CrossRef] [Green Version]
- Hamada, Y.Z.; Carlson, B.L.; Shank, J.T. Potentiometric and UV–Vis spectroscopy studies of citrate with the Hexaquo Fe3+ and Cr3+ metal ions. Synth. React. Inorg. Met. Org. Chem. 2003, 33, 1425–1440. [Google Scholar] [CrossRef]
- Zaman, S. Synthesis of ZnO, CuO and Their Composite Nanostructures for Optoelectronics, Sensing and Catalytic Applications; Linköping University Electronic Press: Linköping, Sweden, 2012. [Google Scholar]
- Haque, Z.; Ranjan, P. Synthesis of ZnO/CuO nanocomposite and optical study of ammonia (NH3) gas sensing. Int. J. Sci. Eng. Res. 2014, 5, 2229–5518. [Google Scholar]
- Dustgeer, M.R.; Asma, S.T.; Jilani, A.; Raza, K.; Hussain, S.Z.; Shakoor, M.B.; Iqbal, J.; Abdel-wahab, M.S.; Darwesh, R. Synthesis and characterization of a novel single-phase sputtered Cu2O thin films: Structural, antibacterial activity and photocatalytic degradation of methylene blue. Inorg. Chem. Commun. 2021, 128, 108606. [Google Scholar] [CrossRef]
- Madhusudhana, N.; Yogendra, K.; Mahadevan, K.M. Photocatalytic degradation of violet GL2B azo dye by using calcium aluminate nanoparticle in presence of solar light. Res. J. Chem. Sci. ISSN 2012, 2231, 606X. [Google Scholar]
- Mohsin, M.; Bhatti, I.A.; Ashar, A.; Mahmood, A.; ul Hassan, Q.; Iqbal, M. Fe/ZnO@ ceramic fabrication for the enhanced photocatalytic performance under solar light irradiation for dye degradation. J. Mater. Res. Technol. 2020, 9, 4218–4229. [Google Scholar] [CrossRef]
- Ashar, A.; Bhatti, I.A.; Ashraf, M.; Tahir, A.A.; Aziz, H.; Yousuf, M.; Ahmad, M.; Mohsin, M.; Bhutta, Z.A. Fe3+@ ZnO/polyester based solar photocatalytic membrane reactor for abatement of RB5 dye. J. Clean. Prod. 2020, 246, 119010. [Google Scholar] [CrossRef]
- Jilani, A.; Hussain, S.Z.; Ansari, M.O.; Kumar, R.; Dustgeer, M.R.; Othman, M.H.D.; Barakat, M.A.; Melaibari, A.A. Facile synthesis of silver decorated reduced graphene oxide@zinc oxide as ternary nanocomposite: An efficient photocatalyst for the enhanced degradation of organic dye under UV–visible light. J. Mater. Sci. 2021, 56, 7434–7450. [Google Scholar] [CrossRef]
- Mohammadi-Aloucheh, R.; Habibi-Yangjeh, A.; Bayrami, A.; Latifi-Navid, S.; Asadi, A. Green synthesis of ZnO and ZnO/CuO nanocomposites in Mentha longifolia leaf extract: Characterization and their application as anti-bacterial agents. J. Mater. Sci. Mater. Electron. 2018, 29, 13596–13605. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Puad, N.A.A.; Bello, O.S. Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Resour. Ind. 2014, 6, 18–35. [Google Scholar] [CrossRef] [Green Version]
- Kamsonlian, S.; Shukla, B. Optimization of process parameters using Response Surface Methodology (RSM): Removal of Cr (VI) from aqueous solution by wood apple shell activated carbon (WASAC) Res. J. Chem. Sci. 2013, 3, 31–37. [Google Scholar]
- Alswata, A.A.; Ahmad, M.B.; Al-Hada, N.M.; Kamari, H.M.; Hussein, M.Z.B.; Ibrahim, N.A. Preparation of Zeolite/Zinc Oxide Nanocomposites for toxic metals removal from water. Results Phys. 2017, 7, 723–731. [Google Scholar] [CrossRef]
- Assadi, A.; Dehghani, M.H.; Rastkari, N.; Nasseri, S.; Mahvi, A.H. Photocatalytic reduction of hexavalent chromium in aqueous solutions with zinc oxide nanoparticles and hydrogen peroxide. Environ. Prot. Eng. 2012, 38, 5–16. [Google Scholar] [CrossRef]
- Saien, J.; Azizi, A.; Soleymani, A.R. Photocatalytic reduction of ni (II) ions using low amounts of titania nanoparticles: RSM modelling, kinetic. Iran. J. Toxicol. 2014, 8, 1136–1144. [Google Scholar]
- Wiryawan, A.; Retnowati, R.; Burhan, P.; Syekhfani, S. Method of analysis for determination of the chromium (Cr) species in water samples by spectrophotometry with diphenylcarbazide. J. Environ. Eng. Sustain. Technol. 2018, 5, 37–46. [Google Scholar]
- Suryati, L.; Sulistyarti, H.; Atikah, A. Development of spectrophotometric method for determination of chromium species using hypochlorite agent based on the formation of Cr (VI)-Diphenylcarbazide complex. J. Pure Appl. Chem. Res. 2015, 4, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Kocurek, P.; Vašková, H.; Kolomaznik, K.; Bařinová, M. Hexavalent chromium determination in waste from leather industry using spectrophotometric methods. Wseas. Trans. Environ. Dev. 2015, 11, 256–263. [Google Scholar]
- Zhao, X.; Sui, Z.H.; Zhang, J.B. Determination of Trace Chromium (VI) in Tanning Wastewater by Flow Injection Spectrophotometry. Adv. Mater. Res. 2010, 113–116, 1732–1734. [Google Scholar] [CrossRef]
- Heena, G.; Rani, S.; Malik, A.; Kabir, A. Speciation of Cr (III) and Cr (VI) Ions via Fabric Phase Sorptive Extraction for their Quantification via HPLC with UV Detection. J. Chromatogr. Sep. Tech. 2016, 7, 1000327. [Google Scholar]
- Lennartson, A. The colours of chromium. Nat. Chem. 2014, 6, 942. [Google Scholar] [CrossRef]
- Saha, B.; Orvig, C. Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord. Chem. Rev. 2010, 254, 2959–2972. [Google Scholar] [CrossRef]
- Theopold, K.H. Chromium: Inorganic & Coordination Chemistry. Encycl. Inorg. Chem. 2006, 1, 1–14. [Google Scholar]
- Joshi, K.; Shrivastava, V. Photocatalytic degradation of Chromium (VI) from wastewater using nanomaterials like TiO2, ZnO, and CdS. Appl. Nanosci. 2011, 1, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Hemalatha, K.; Manivel, A.; Kumar, M.S.; Mohan, S.C. Synthesis and Characterization of Sn/ZnO Nanoparticles for Removal of Organic Dye and Heavy Metal. Biol. Chem. 2018, 12, 1–7. [Google Scholar] [CrossRef]
Run | pHbol | Initial Concentration of Cr(VI) (ppm) | Sunlight Irradiation Time (h) | Reduction (%) |
---|---|---|---|---|
1 | 9.00 | 10 | 6.00 | 87 |
2 | 9.00 | 50 | 6.00 | 84 |
3 | 5.00 | 10 | 2.00 | 38 |
4 | 3.64 | 30 | 4.00 | 71 |
5 | 7.00 | 30 | 4.00 | 77 |
6 | 7.00 | 30 | 4.00 | 74 |
7 | 7.00 | 30 | 4.00 | 97 |
8 | 7.00 | 30 | 4.00 | 76 |
9 | 5.00 | 50 | 2.00 | 32 |
10 | 7.00 | 30 | 4.00 | 75 |
11 | 10.36 | 30 | 4.00 | 77 |
12 | 7.00 | 63.5 | 7.36 | 83 |
13 | 9.00 | 50 | 2.00 | 41 |
14 | 7.00 | 30 | 4.00 | 61 |
15 | 9.00 | 10 | 2.00 | 54 |
16 | 5.00 | 50 | 6.00 | 83 |
17 | 7.00 | 3.5 | 4.00 | 75 |
18 | 7.00 | 30 | 4.00 | 73 |
19 | 5.00 | 10 | 6.00 | 89 |
20 | 7.00 | 30 | 0.64 | 21 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 7384.73 | 9 | 820.53 | 20.67 | <0.0001 | Significant |
A—Initial concentration of Cr(VI) | 275.72 | 1 | 275.72 | 6.94 | 0.0249 | |
B—pH | 123.63 | 1 | 123.63 | 3.11 | 0.1081 | |
C—irradiation time | 5548.44 | 1 | 5548.44 | 139.75 | <0.0001 | |
AB | 1.13 | 1 | 1.13 | 0.028 | 0.8697 | |
AC | 136.12 | 1 | 136.12 | 3.43 | 0.0938 | |
BC | 1.13 | 1 | 1.13 | 0.028 | 0.8697 | |
A2 | 10.90 | 1 | 10.90 | 0.27 | 0.6117 | |
B2 | 131.39 | 1 | 131.39 | 3.31 | 0.0989 | |
C2 | 1077.75 | 1 | 1077.75 | 27.15 | 0.0004 | |
Residual | 397.02 | 10 | 39.70 | |||
Lack of fit | 219.02 | 5 | 43.80 | 1.23 | 0.4128 | Not significant |
Pure error | 178.00 | 5 | 35.60 | |||
Cor total | 7781.75 | 19 |
Sample collection time (min) | 0 | 60 | 120 | 180 | 240 | 300 |
Conc. of Cr (ppm) | 216 | 164 | 124 | 72 | 47 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashar, A.; Bhatti, I.A.; Jilani, A.; Mohsin, M.; Rasul, S.; Iqbal, J.; Shakoor, M.B.; Al-Sehemi, A.G.; Wageh, S.; Al-Ghamdi, A.A. Enhanced Solar Photocatalytic Reduction of Cr(VI) Using a (ZnO/CuO) Nanocomposite Grafted onto a Polyester Membrane for Wastewater Treatment. Polymers 2021, 13, 4047. https://doi.org/10.3390/polym13224047
Ashar A, Bhatti IA, Jilani A, Mohsin M, Rasul S, Iqbal J, Shakoor MB, Al-Sehemi AG, Wageh S, Al-Ghamdi AA. Enhanced Solar Photocatalytic Reduction of Cr(VI) Using a (ZnO/CuO) Nanocomposite Grafted onto a Polyester Membrane for Wastewater Treatment. Polymers. 2021; 13(22):4047. https://doi.org/10.3390/polym13224047
Chicago/Turabian StyleAshar, Ambreen, Ijaz Ahmad Bhatti, Asim Jilani, Muhammad Mohsin, Sadia Rasul, Javed Iqbal, Muhammad Bilal Shakoor, Abdullah G. Al-Sehemi, S. Wageh, and Ahmed A. Al-Ghamdi. 2021. "Enhanced Solar Photocatalytic Reduction of Cr(VI) Using a (ZnO/CuO) Nanocomposite Grafted onto a Polyester Membrane for Wastewater Treatment" Polymers 13, no. 22: 4047. https://doi.org/10.3390/polym13224047