Waste Materials as a Resource for Production of CMC Superabsorbent Hydrogel for Sustainable Agriculture
Abstract
:1. Introduction
2. Materials and Methods
3. Useful Waste Material
3.1. Characteristics of Cellulose in Agricultural Wastes
3.2. Waste Material Treatment
4. Chemical Modification of Cellulose
4.1. Carboxymethylation by the Classic Method
4.2. Microwave-Assisted Synthesis of CMC
4.3. Proof of Carboxymethylation
4.3.1. Degree of Substitution
4.3.2. Infrared Spectroscopy
5. CMC
5.1. Cellulosic Water
5.2. Superabsorbent Hydrogels
5.3. Enzymatic Degradation of CMC Hydrogel
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dai, H.; Huang, Y.; Huang, H. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydr. Polym. 2018, 185, 1–11. [Google Scholar] [CrossRef]
- Yazdani, F.; Allahdadi, I.; Abas Akbari, G. Impact of superabsorbent polymer on yield and growth analysis of soybean (Glycine max L.) under drought stress condition. Pak. J. Bio. Sci. 2007, 10, 4190–4196. [Google Scholar] [CrossRef] [Green Version]
- Xiquan, L.; Tingzhu, Q.; Shaoqui, Q. Kinetics of the carboxymethyl cellulose in the isopropyl alcohol system. Acta Polym. 1990, 41, 220. [Google Scholar] [CrossRef]
- Darwis, D.; Mitomo, H.; Yoshii, F. Degradability of radiation crosslinked PCL in the supercooled state under various environments. Polym. Degrad. Stab. 1999, 65, 279–285. [Google Scholar] [CrossRef]
- Li, S.; Chen, G.; Anandhi, A. Applications of emerging bioelectrochemical technologies in agricultural systems: A current review. Energies 2018, 11, 2951. [Google Scholar] [CrossRef] [Green Version]
- Van de Vyver, S.; Geboers, J.; Jacobs, P.A.; Sels, B.F. Recent advances in the catalytic conversion of cellulose. ChemCatChem 2011, 3, 82–94. [Google Scholar] [CrossRef]
- Montesano, F.; Parente, A.; Santamaria, P.; Sannino, A.; Serio, F. Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agric. Agric. Sci. Procedia 2015, 4, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Chen, G. Agricultural waste-derived superabsorbent hydrogels: Preparation, performance, and socioeconomic impacts. J. Clean. Prod. 2019, 251, 119669. [Google Scholar] [CrossRef]
- Bao, Y.; Ma, J.; Li, N. Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr. Polym. 2010, 84, 76–82. [Google Scholar] [CrossRef]
- Lionetto, F.; Sannino, A.; Maffezzoli, A. Ultrasonic monitoring of the network formation in superabsorbent cellulose based hydrogels. Polymer 2005, 46, 1796–1803. [Google Scholar] [CrossRef]
- Lim, K.Y.; Yoon, K.J.; Kim, B.C. Highly absorbable lyocell fiber spun from cellulose/hydrolyzed starch-g-PAN solution in NMMO monohydrate. Eur. Polym. J. 2003, 39, 2115–2120. [Google Scholar] [CrossRef]
- Sannino, A.; Maffezzoli, A.; Nicolais, L. Introduction of molecular spacers between the crosslinks of a cellulose-based superabsorbent hydrogel: Effects on the equilibrium sorption properties. J. Appl. Polym. Sci. 2003, 90, 168–174. [Google Scholar] [CrossRef]
- Stamps, R.H.; Savage, H.M. Cellulosic water and polyacrylamide gels can delay wilting and extend watering intervals for potted poinsettias displayed in interiorscapes. Horttechnology 2012, 22, 766–770. [Google Scholar] [CrossRef]
- Ganguly, S.; Das, N.C. Water uptake kinetics and control release of agrochemical fertilizers from nanoclay-assisted semi-interpenetrating sodium acrylate-based hydrogel. Polym. Plast. Technol. Eng. 2017, 56, 744–761. [Google Scholar] [CrossRef]
- Gajić, I.; Ilić-Stojanović, S.; Dinić, A.; Zdravković, A.; Stanojević, L.; Nikolić, V.; Nikolić, L. Modified biochanin a release from dual pH- and thermo-responsive copolymer hydrogels. Polymers 2021, 13, 426. [Google Scholar] [CrossRef]
- Hebeish, A.; Hashem, M.; El-Hady, M.M.A.; Sharaf, S. Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr. Polym. 2013, 92, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Candido, R.G.; Goncalves, A.R. Synthesis of cellulose acetate and carboxymethylcellulose from sugarcane straw. Carbohydr. Polym. 2016, 152, 679–686. [Google Scholar] [CrossRef]
- Cao, G.; Zhang, X.; Gong, S.; Zheng, F. Investigation on emission factors of particulate matter and gaseous pollutants from crop residue burning. J. Environ. Sci. 2008, 20, 50–55. [Google Scholar] [CrossRef]
- Bendaoud, A.; Chalamet, Y. Plasticizing effect of ionic liquid on cellulose acetate obtained by melt processing. Carbohydr. Polym. 2014, 108, 75–82. [Google Scholar] [CrossRef]
- Heguaburu, V.; Franco, J.; Reina, L.; Tabarez, C.; Moyna, G.; Moyna, P. Dehydration of carbohydrates to 2-furaldehydes in ionic liquids by catalysis with ion exchange resins. Catal. Commun. 2012, 27, 88–91. [Google Scholar] [CrossRef]
- Daud, W.R.W.; Djuned, F.M. Cellulose acetate from oil palm empty fruit bunch via a one step heterogeneous acetylation. Carbohydr. Polym. 2015, 132, 252–260. [Google Scholar] [CrossRef]
- Sarkar, N.; Ghosh, S.K.; Bannerjee, S.; Aikat, K. Bioethanol production from agricultural wastes: An overview. Renew. Energy 2012, 37, 19–27. [Google Scholar] [CrossRef]
- Van Wyk, J.P.N. Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends Biotechnol. 2001, 19, 172–177. [Google Scholar] [CrossRef]
- Phanthong, P.; Reubroycharoen, P.; Hao, X.; Xu, G.; Abudula, A.; Guan, G. Nanocellulose: Extraction and application. Carbon Resour. Convers. 2018, 1, 32–43. [Google Scholar] [CrossRef]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef] [PubMed]
- Barkalow, D.G.; Young, R.A. Cellulose derivatives derived from pulp and paper mill sludge. J. Wood Chem. Technol. 1985, 5, 293–312. [Google Scholar] [CrossRef]
- Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Heinze, T.; Koschella, A. Carboxymethyl ethers of cellulose and starch-a review. Macromol. Symp. 2005, 223, 130–139. [Google Scholar] [CrossRef]
- Feddersen, R.L.; Thorp, S.N. Industrial Gums and Their Derivatives; Academic Press: New York, NY, USA, 1993; pp. 537–578. [Google Scholar]
- Sandford, P.A.; Baird, J. The Polysaccharides; Academic Press: Reading, MA, USA, 1983; pp. 411–490. [Google Scholar]
- Moussa, I.; Khiari, R.; Moussa, A.; Belgacem, M.H.; Mhenni, M.F. Preparation and characterization of carboxymethyl cellulose with a high degree of substitution from agricultural wastes. Fibers Polym. 2019, 20, 933–943. [Google Scholar] [CrossRef]
- Klunklin, W.; Jantanasakulwong, K.; Phimolsiripol, Y.; Leksawasdi, N.; Seesuriyachan, P.; Chaiyaso, T.; Insomphun, C.; Phongthai, S.; Jantrawut, P.; Sommano, S.R.; et al. Synthesis, Characterization, and Application of carboxymethyl cellulose from asparagus stalk end. Polymers 2021, 13, 81. [Google Scholar] [CrossRef]
- Huang, C.M.Y.; Chia, P.X.; Lim, C.S.S.; Nai, J.Q.; Ding, D.Y.; Seow, P.B.; Wong, C.W.; Chan, E.W.C. Synthesis and characterisation of carboxymethyl cellulose from various agricultural wastes. Cellul. Chem. Technol. 2017, 51, 665–672. [Google Scholar]
- Biswas, A.; Kim, S.; Selling, G.W.; Cheng, H.N. Conversion of agricultural residues to carboxymethylcellulose and carboxymethylcellulose acetate. Ind. Crops. Prod. 2014, 60, 259–265. [Google Scholar] [CrossRef]
- Adinugraha, M.P.; Marseno, D.W.; Haryadi. Synthesis and characterization of sodium carboxymethilcellulose from cavendish banana pseudo stem (Musa cavendishii LAMBERT). Carbohydr. Polym. 2005, 62, 164–169. [Google Scholar] [CrossRef]
- Silva, D.A.; de Paula, R.C.M.; Feitosa, J.P.A.; de Brito, A.C.F.; Maciel, J.S.; Paula, H.C.B. Carboxymethylation of cashew tree exudate polysaccharide. Carbohydr. Polym. 2004, 58, 163–171. [Google Scholar] [CrossRef]
- Singh, R.K.; Singh, A.K. Optimization of reaction conditions for preparing carboxymethyl cellulose from corn cobic agricultural waste. Waste Biomass Valorization 2013, 4, 129–137. [Google Scholar] [CrossRef]
- Haleem, N.; Arshad, M.; Shahid, M.; Tahir, M.A. Synthesis of carboxymethyl cellulose from waste of cotton ginning industry. Carbohydr. Polym. 2014, 113, 249–255. [Google Scholar] [CrossRef]
- Jahan, I.A.; Sultana, F.; Islam, M.N.; Hossain, M.A.; Abedin, J. Studies on indigenous cotton linters for preparation of carboxymethyl cellulose. Bangladesh J. Sci. Ind. Res. 2007, 42, 29–36. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Luangkamin, S.; Tanprasert, K.; Suriyatem, R. Carboxymethyl cellulose film from durian rind. LWT Food Sci. Technol. 2012, 48, 52–58. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Rattanapanone, N. Synthesis and characterization of carboxymethyl cellulose powder and films from Mimosa pigra. J. Appl. Polym. Sci. 2011, 122, 3218–3226. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Kumthai, S.; Mulkarat, N.; Pintajam, N.; Suriyatem, R. Value added of mulberry paper waste by carboxymethylation for preparation a packaging film. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2015; Volume 87, p. 012081. [Google Scholar] [CrossRef] [Green Version]
- Yasar, F.; Togrul, H.; Arslan, N. Flow properties of cellulose and carboxymethyl cellulose from orange peel. J. Food Eng. 2007, 81, 187–199. [Google Scholar] [CrossRef]
- Suriyatem, R.; Noikang, N.; Kankam, T.; Jantanasakulwong, K.; Leksawasdi, N.; Phimolsiripol, Y.; Insomphun, C.; Seesuriyachan, P.; Chaiyaso, T.; Jantrawut, P.; et al. Physical properties of carboxymethyl cellulose from palm bunch and bagasse agricultural wastes: Effect of delignification with hydrogen peroxide. Polymers 2020, 12, 1505. [Google Scholar] [CrossRef]
- Rachtanapun, P. Blended films of carbixymethyl cellulose from papaya peel (CMCp) and corn strach. Kasetsart J. (Nat. Sci.) 2009, 43, 259–266. [Google Scholar]
- Chen, J.; Li, H.; Fang, C.; Cheng, Y.; Tan, T.; Han, H. Synthesis and structure of carboxymethylcellulose with a high degree of substitution derived from waste disposable paper cups. Carbohydr. Polym. 2020, 237, 116040. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Huang, H. Enhanced swelling and responsive properties of pineapple peel carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogel by the introduction of carclazyte. J. Agric. Food Chem. 2017, 65, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Rodsamran, P.; Sothornvit, R. Rice stubble as a new biopolymer source to produce carboxymethyl cellulose-blended films. Carbohydr. Polym. 2017, 171, 94–101. [Google Scholar] [CrossRef]
- Pushpamalar, V.; Langford, S.J.; Ahmad, M.; Lim, Y.Y. Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydr. Polym. 2006, 64, 312–318. [Google Scholar] [CrossRef]
- Baiya, C.; Nannuan, L.; Tassanapukdee, Y.; Chailapakul, O.; Songsrirote, K. The synthesis of carboxymethyl cellulose-based hydrogel from sugarcane bagasse using microwave-assisted irradiation for selective adsorption of coper(II) ions. Environ. Prog. Sustain. Energy 2018, 38, S157–S165. [Google Scholar] [CrossRef]
- Togrul, H.; Arslan, N. Production of carboxymethyl cellulose from sugar beet pulp cellulose and rheological behaviour of carboxymethyl cellulose. Carbohydr. Polym. 2003, 54, 73–82. [Google Scholar] [CrossRef]
- Girard, M.; Turgeon, S.L.; Paquin, P. Emulsifying properties of whey protein-carboxymethylcellulose. J. Food Sci. 2002, 67, 113–119. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Mulkarat, N.; Pintajam, N. Effect of chitosan coating combined with calcium gluconate on strawberry (Fragaria x ananassa) quality during refrigerated storage. In Proceedings of the 5th International Packaging Congress and Exhibition, Bayrakli, Izmir, Turkey, 22–24 November 2007; Chamber of Chemical Engineers Branch: Ankara, Turkey, 2007. [Google Scholar]
- Waring, M.J.; Parsons, D. Physico-chemical characterisation of carboxymethylated spun cellulose fibers. Biomaterials 2001, 22, 903–912. [Google Scholar] [CrossRef]
- Chia, P.X.; Tan, L.J.; Huang, C.M.J.; Chan, E.W.C.; Wong, S.Y.W. Hydrogel beads from sugar cane bagasse and palm kernel cake, and the viability of encapsulated Lactobacillus acidophilus. E Polym. 2015, 15, 411–418. [Google Scholar] [CrossRef]
- Wang, X.; Zhai, Y.; Zhan, W. Determination of the degree of substitution of carboxymethylcellulose sodium. J. Food Saf. 2015, 6, 3145–3148. [Google Scholar]
- Nie, H.R.; Liu, M.Z.; Chen, Z.B. Kinetic study on bio-degradation of carboxymethylcellulose hydrogel. Acta Phys. Sin. 2004, 20, 386–390. [Google Scholar] [CrossRef]
- Tongdeesoontorn, W.; Mauer, L.; Wongruong, S.; Sriburi, P.; Rachtanapun, P. Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chem. Centr. J. 2011, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Dahlman, O.; Jacobs, A.; Sjoberg, J. Molecular properties of hemicelluloses located in the surface and inner layers of hard wood and softwood pulps. Cellulose 2003, 10, 325–334. [Google Scholar] [CrossRef]
- Oun, A.A.; Rhim, J.-W. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydr. Polym. 2011, 18, 152–165. [Google Scholar] [CrossRef]
- Methacanon, P.; Chaikumpollert, O.; Thavorniti, P.; Suchiva, K. Hemicellulosic polymer from Vetiver grass and its physicochemical properties. Carbohydr. Polym. 2003, 54, 335–342. [Google Scholar] [CrossRef]
- Khan, F.; Ahmad, S.R. Polysaccharides and their derivatives for versatile tissue engineering application. Macromol. Biosci. 2013, 13, 395–421. [Google Scholar] [CrossRef]
- Zhu, Y.; Xiao, S.; Li, M.; Chang, Z.; Wang, F.; Gao, J.; Wu, Y.P. Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. J. Power Sources 2015, 288, 368–375. [Google Scholar] [CrossRef]
- Miljković, V.; Momčilović, M.; Stanković, M.; Ćirković, B.; Laketić, D.; Nikolić, G.; Vujović, M. Remediation of arsenic contaminated water by a novel carboxymethyl cellulose bentonite adsorbent. Appl. Ecol. Environ. Res. 2019, 17, 733–744. [Google Scholar] [CrossRef]
- Miljković, V.; Jokanović, M.; Jokanović, M.; Đorđević, S.; Stanković, M.; Stojiljković, S.; Vujović, M.; Bojanić, N. The removal of lead (II) ions from aqueous solutions by acid-activated clay modified with sodium carboxymethil cellulose. Appl. Ecol. Environ. Res. 2017, 15, 1461–1472. [Google Scholar] [CrossRef]
- Wei, W.; Kim, S.; Song, M.-H.; Bediako, J.K.; Yun, Y.-S. Carboxymethylcellulose fiber as a fast binding and biodegradable adsorbent of heavy metals. J. Taiwan Inst. Chem. Eng. 2015, 54, 104–110. [Google Scholar] [CrossRef]
- Dapia, S.; Tovar, C.A.; Santos, V.; Parajo, J.C. Rheological behavior of carboxymethylcellulose manufactured from TCF-bleached milox pulps. Food Hydrocoll. 2005, 19, 313–320. [Google Scholar] [CrossRef]
- Son, Y.R.; Rhee, K.Y.; Park, S.J. Influence of reduced graphene oxide on mechanical behaviors of sodium carboxymethyl cellulose. Compos. B Eng. 2015, 83, 36–42. [Google Scholar] [CrossRef]
- Guo, J.H.; Skinner, G.W.; Harcum, W.W.; Barnum, P.E. Pharmaceutical applications of naturally occurring water-soluble polymers. Pharm. Sci. Technol. Today 1998, 1, 254–261. [Google Scholar] [CrossRef]
- Benchabane, A. Rheological Properties of Carboxymethyl Cellulose (CMC) Solutions. Ph.D. Thesis, University Louis Pasteur, Strasbourg, France, 2006. [Google Scholar]
- Thenapakiam, S.; Kumar, D.; Pushpamalar, J.; Saravanan, M. Aluminium and radiation cross-linked carboxymethyl sago pulp beads for colon targeted delivery. Carbohydr. Polym. 2013, 94, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Bono, A.; Ying, P.H.; Yan, F.Y.; Muei, C.L.; Sarbatly, R.; Krishnaiah, D. Synthesis and characterization of carboxymethyl cellulose from palm kernel cake. Adv. Nat. Appl. Sci. 2009, 3, 5–11. [Google Scholar]
- Avera, F.L. Moisturizing Agent. U.S. Patent 4,865,640, 12 September 1989. [Google Scholar]
- Dellavalle, N.B. Efficacy test of driwater—A slow water release substrate. Commun. Soil Sci. Plant Anal. 1992, 23, 2547–2553. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Ghasemzadeh, H.; Soleyman, R. Synthesis, characterization, and swelling and behavior of alginate-g-poly(sodium acrylate)/kaolin superabsorbent hydrogel composites. J. Appl. Polym. Sci. 2007, 105, 2631–2639. [Google Scholar] [CrossRef]
- Wang, W.; Wang, A. Nanocomposite of carboxymethyl cellulose and attapulgite as a novel pH-sensitive superabsorbent: Synthesis, characterization and properties. Carbohydr. Polym. 2010, 461, 83–91. [Google Scholar] [CrossRef]
- Ibrahim, S.M.; El Salmawi, K.M.; Zahran, A.H. Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation. J. Appl. Polym. Sci. 2007, 104, 2003–2008. [Google Scholar] [CrossRef]
- Chang, C.; Duan, B.; Cai, J.; Zhang, L. Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur. Polym. J. 2010, 46, 92–100. [Google Scholar] [CrossRef]
- Fekete, T.; Borsa, J.; Takács, E.; Wojnárovits, L. Synthesis of cellulose derivative based superabsorbent hydrogels by radiation induced crosslinking. Cellulose 2014, 21, 4157–4165. [Google Scholar] [CrossRef]
- Fekete, T.; Borsa, J.; Takács, E.; Wojnárovits, L. Synthesis of carboxymethylcellulose/ starch superabsorbent hydrogels by gamma-irradiation. Chem. Cent. J. 2017, 11, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klinpituksa, P.; Kosaiyakanon, P. Superabsorbent polymer based on sodium carboxymethyl cellulose grafted polyacrylic acid by inverse suspension polymerization. Int. J. Polym. Sci. 2017, 9, 3476921. [Google Scholar] [CrossRef]
- Lee, J.; Park, S.; Roh, H.-g.; Oh, S.; Sunghoon Kim, S.; Kim, M.; Kim, D.; Park, J. Preparation and characterization of superabsorbent polymers based on starch aldehydes and carboxymethyl cellulose. Polymers 2018, 10, 605. [Google Scholar] [CrossRef] [Green Version]
- Nnadi, F.; Brave, C. Environmentally friendly superabsorbent polymers for water conservation in agricultural lands. J. Soil Sci. Environ. Manag. 2011, 2, 206–211. [Google Scholar]
- Petroudy, S.R.D.; Ranjbar, J.; Garmaroody, E.R. Eco-friendly superabsorbent polymers based on carboxymethyl cellulose strengthened by TEMPO-mediated oxidation wheat straw cellulose nanofiber. Carbohydr. Polym. 2018, 197, 565–575. [Google Scholar] [CrossRef]
- Raafat, A.I.; Eid, M.; El-Arnaouty, M.B. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications. Nucl. Instrum. Methods Phys. Res. B 2012, 283, 71–76. [Google Scholar] [CrossRef]
- Salleh, K.M.; Zakaria, S.; Sajab, M.S.; Gan, S.; Kaco, H. Superabsorbent hydrogel from oil palm empty fruit bunch cellulose and sodium carboxymethylcellulose. Int. J. Biol. Macromol. 2019, 131, 51–59. [Google Scholar] [CrossRef]
- Suo, A.; Qian, J.; Yao, Y.; Zhang, W. Synthesis and properties of carboxymethyl cellulosegraft-poly(acrylic acid-co-acrylamide) as a novel cellulose-based superabsorbent. J. Appl. Polym. Sci. 2007, 103, 1382–1388. [Google Scholar] [CrossRef]
- Sutradhar, S.C.; Khan, M.M.R.; Rahman, M.M.; Dafadar, N.C. The synthesis of superabsorbent polymers from a carboxymethylcellulose/acrylic acid blend using gamma radiation and its application in agriculture. J. Phys. Sci. 2015, 26, 23–39. [Google Scholar]
- Tang, H.; Chen, H.; Duan, B.; Lu, A.; Zhang, L. Swelling behaviors of superabsorbent chitin/carboxymethylcellulose hydrogels. J. Mater. Sci. 2014, 49, 2235–2242. [Google Scholar] [CrossRef]
- Wach, A.R.; Mitomo, H.; Yoshii, F.; Kume, T. Hydrogel of biodegradable cellulose derivatives. II. Effect of some factors on radiation-induced crosslinking of CMC. J. Appl. Polym. Sci. 2001, 81, 3030–3037. [Google Scholar] [CrossRef]
- Fei, B.; Wach, R.A.; Mitomo, H.; Yoshii, F.; Kume, T. Hydrogel of biodegradable cellulose derivatives. I. Radiation-Induced crosslinking of CMC. J. Appl. Polym. Sci. 2000, 78, 278–283. [Google Scholar] [CrossRef]
- Stahl, J.D.; Cameron, M.D.; Haselbach, J.; Aust, S.D. Biodegradation of superabsorbent polymers in soil. Environ. Sci. Pollut. Res. 2000, 7, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Kabiri, K.; Omidian, H.; Zohuriaan-Mehr, M.J.; Doroudiani, S. Superabsorbent hydrogel composites and nanocomposites: A review. Polym. Compos. 2010, 32, 277–289. [Google Scholar] [CrossRef]
Starting Waste Material | Cellulose (g) | Reaction Medium | NaOH | MCA/ Diazomethane | Temperature (°C) | Reaction Time (h) | DS | Yield (%) | Reference |
---|---|---|---|---|---|---|---|---|---|
Almond shells | 10 | Pentan-1-ol 60 mL | 40%, 60 mL | MCA, 17.4 g | 80 | 8 | 1.72 | 58.65 | [31] |
Almond stems | 10 | Pentan-1-ol 60 mL | 40%, 60 mL | MCA, 17.4 g | 80 | 8 | 2.53 | 62.77 | [31] |
Asparagus officinalis stalk end | 15 | IPA, 350 mL | 30%, 50 mL | MCA, 18 g | 55 | 3 | 0.98 | 44.04 | [32] |
Black tea leaves | 5 | IPA, 80 mL | 20%, 10 mL | MCA, 3 g | 60 | 3 | 0.77 | 91.2 | [33] |
Barley straw | 1 | IPA 10 mL + H2O 1 mL | 6 M, 5 mL | MCA, 2.4 g | 50 | 3 | 1.1 | 106 | [34] |
Cavendish banana pseudo steam | 5 | IPA, 100 mL | 15%, 20 mL | MCA, 6 g | 55 | 3 | 0.75 | 98.63 | [35] |
Cashew tree gum | 5 | H2O, 5 mL | 10 M, 16 mL | MCA, 7.87 g | 55 | 3 | 2.21 | 31 | [36] |
Coconut fibers | 5 | IPA, 80 mL | 20%, 10 mL | MCA, 3 g | 50 | 3 | 0.65 | 104.8 | [33] |
Corn cob | 5 | IPA, 90 mL | 25%, 3.25 mol/AGU | MCA, 2.4 mol/AGU | 60 | 3 | 1.18 | n. r. | [37] |
Cotton gin | 5 | H2O:IPA (1:4), 300 mL | 20%, 30 mL | MCA, 5 g | 40-60 | 3 | 0.87 | 143.7 | [38] |
Cotton linters | 5 | H2O:EtOH (1:4), 32.8 mL | 100%, 7.2 mL | MCA 80%, 10 mL | 50 | 6 | 0.89 | - | [39] |
Dried duckweed | 5 | IPA, 80 mL | 20%, 10 mL | MCA, 3 g | 60 | 3 | 0.54 | 91.4 | [33] |
Durian rind fruit | 15 | IPA, 450 mL | 30%, 50 mL | MCA, 18 g | 55 | 3 | 0.87 | 165 | [40] |
Fig stems | 10 | Butanol, 60 mL | 40%, 60 mL | MCA, 17.4 g | 80 | 8 | 2.83 | 80.54 | [31] |
Mimosa pigra peel | 10 | IPA, 500 mL | 50%, 100 mL | MCA, 15 g | 55 | 3.5 | 0.23 | n. r. | [41] |
Mulberry paper | 15 | IPA, 750 mL | 40%, 150 mL | MCA, 22.5 g | 55 | 3.5 | 0.45 | n. r. | [42] |
Oil palm fibers | 5 | IPA, 80 mL | 20%, 10 mL | MCA, 5 g | 50 | 3 | 0.6 | 116.8 | [33] |
Orange peel | 2 | IPA, 100 mL | 30%, 20 mL | MCA, 3 g | 70 | 6 | 0.67 | n. r. | [43] |
Palm bunch | 15 | IPA, 450 mL | 40%, 50 mL | MCA, 18 g | 55 | 3.5 | 0.36 | 135.8 | [44] |
Palm kernel cake | 5 | IPA, 80 mL | 20%, 10 mL | MCA, 3 g | 50 | 3 | 0.73 | 116.6 | [33] |
Papaya peel | 15 | IPA, 450 mL | 40%, 50 mL | MCA, 18 g | 55 | 3.5 | n. r. | 126.4 | [45] |
Paper cups | n. r. | EtOH 85%, 150 mL | 6 g | MCA, 7 g | 70 | 1.5 | 1.21 | n. r. | [46] |
Pineapple peel | 10 | 90% IPA 200 mL + 30% H2O2 1.2 mL | 50%, 16 mL | Diazomethane 50% (w/v), 14 mL | 45-75 | 3 | 1.05 | n. r. | [47] |
Rice hull | 1 | IPA 10 mL + H2O 1 mL | 6 M, 5 mL | MCA, 2.4 | 50 | 3 | 1.3 | 85 | [34] |
Rice stubble | 5 | IPA, 100 mL | 30%, 25 mL | MCA, 7 g | 50 | 3 | 0.64 | 95 | [48] |
Sago pulp | 5 | IPA, 100 mL | 30%, 10 mL | MCA, 6g | 45 | 3 | 0.82 | n. r. | [49] |
Sugarcane bagasse | 5 | IPA, 80 mL | 20%, 10 mL | MCA, 5 g | 50 | 3 | 0.69 | 117.4 | [33] |
Sugarcane bagasse | 5 | IPA, 150 mL | 25%, 15 mL | MCA, 6 g | 60 | 3.5 | 0.69 | 166.2 | [50] |
Sugarcane bagasse | 15 | IPA, 450 mL | 40%, 50 mL | MCA, 18 g | 55 | 3.5 | 0.53 | 142.4 | [44] |
Sugar beet pulp | 2 | IPA, 100 mL | 30%, 20 mL | 3 | 70 | 6 | 0.67 | 64.2 | [51] |
Sugarcane straw | 5 | EtOH 92.5 g + H2O 3.7 g | 38.46%, 13 mL | MCA, 24.94 | 60 | 3 | 0.4 | n. r. | [17] |
Wheat straw | 1 | IPA 10 mL + H2O 1 mL | 6 M, 5 mL | MCA, 2.4 | 50 | 30 | 1.5 | 106 | [34] |
Composition | Polymerization Method | Swelling Ratio (g/g) | Reference |
---|---|---|---|
CMC, acrylic acid, acryl amide, 2-acrylamido-2-methyl-1-propanesulfonic acid, montmorillonite, K2S2O8 (initiator), N,N′-methylenebisacrylamide (crosslinker) | Graft copolymerization | 680.2 | [9] |
CMC, cellulose, epichlorohydrin (crosslinker) | NaOH and urea water solution | 1000 | [78] |
CMC, acrylic acid, acrylamide, crosslinkers (ammonium persulfate, N,N′–methylenebisacrylamide) | Graft copolymerization | 420.17 | [47] |
CMC | Gamma beam irradiation | ~450 | [79] |
CMC, starch | Gamma beam irradiation | 350 | [80] |
CMC, acryl amide, N,N′–methylenebisacrylamide (crosslinker) | Electron beam irradiation | 2611 | [77] |
CMC, acrylic acid, K2S2O8 (initiator), N,N′–methylenebisacrylamide (crosslinker) | Graft copolymerization, inverse suspension polymerization | 544.95 | [81] |
CMC, starch aldehydes, citric acid (crosslinker) | n. r. | 87 | [82] |
CMC, starch, aluminum sulfate octadecahydrate (crosslinker) | n. r. | 72 | [83] |
CMC, cellulose nanofibers, cellulose nanocrystals, citric acid (crosslinker) | Hydroxyethyle cellulose solution | 200 | [84] |
CMC, polyvinylpyrrolidone (crosslinker) | Gamma beam irradiation | 144 | [85] |
CMC, cellulose, epichlorohydrin (crosslinker) | NaOH/urea (7:12) water solution | 80 | [86] |
CMC, acrylic acid, acrylamide, K2S2O8 (initiator), Na2S2O5 (initiator), N,N′–methylenebisacrylamide (crosslinker) | Free-radical grafting solution polymerization | 920 | [87] |
CMC, acrylic acid, KOH (neutralizing agent), | Gamma beam irradiation | ~16,500 | [88] |
CMC, chitin, epichlorohydrin (crosslinker) | NaOH 8% and urea 4% water solution | 1200 | [89] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miljković, V.; Gajić, I.; Nikolić, L. Waste Materials as a Resource for Production of CMC Superabsorbent Hydrogel for Sustainable Agriculture. Polymers 2021, 13, 4115. https://doi.org/10.3390/polym13234115
Miljković V, Gajić I, Nikolić L. Waste Materials as a Resource for Production of CMC Superabsorbent Hydrogel for Sustainable Agriculture. Polymers. 2021; 13(23):4115. https://doi.org/10.3390/polym13234115
Chicago/Turabian StyleMiljković, Vojkan, Ivana Gajić, and Ljubiša Nikolić. 2021. "Waste Materials as a Resource for Production of CMC Superabsorbent Hydrogel for Sustainable Agriculture" Polymers 13, no. 23: 4115. https://doi.org/10.3390/polym13234115
APA StyleMiljković, V., Gajić, I., & Nikolić, L. (2021). Waste Materials as a Resource for Production of CMC Superabsorbent Hydrogel for Sustainable Agriculture. Polymers, 13(23), 4115. https://doi.org/10.3390/polym13234115