Effect of Nanoencapsulated Alginate-Synbiotic on Gut Microflora Balance, Immunity, and Growth Performance of Growing Rabbits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Encapsulated Synbiotic
2.2. Physicochemical Properties and Encapsulation Efficiency
2.3. In Vitro Gastrointestinal Simulation Tests
2.4. In Vitro Antimicrobial Activities of Synbiotics
2.5. Animal Husbandry and Experimental Design
2.6. Blood Plasma, Biochemical Attributes, Antioxidant Indicators, and Immunological Variables
2.7. Intestinal and Cecal Microbial Count and Fecal Score Evaluation
2.8. Growth Performance
2.9. Statistical Analysis
3. Results
3.1. Physicochemical Properties and Encapsulation Efficiency
3.2. In Vitro Gastrointestinal Simulation Tests and the Antimicrobial Activity Results of Administered Synbiotics
3.3. Hemato-Biochemical and Immunological Responses
3.4. Intestinal and Cecal Microbial Count and Fecal Score Evaluation
3.5. Growth Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hashem, N.M.; Abd El-Hady, A.M.; Hassan, O.A. Inclusion of phytogenic feed additives comparable to vitamin E in diet of growing rabbits: Effects on metabolism and growth. Ann. Agric. Sci. 2017, 62, 161–167. [Google Scholar] [CrossRef]
- Becattini, S.; Taur, Y.; Pamer, E.G. Antibiotic-Induced changes in the intestinal microbiota and disease. Trends Mol. Med. 2016, 22, 458–478. [Google Scholar] [CrossRef] [Green Version]
- Oso, A.; Idowu, O.; Haastrup, A.; Ajibade, A.; Olowonefa, K.; Aluko, A.; Ogunade, I.; Osho, S.; Bamgbose, A. Growth performance, apparent nutrient digestibility, caecal fermentation, ileal morphology and caecal microflora of growing rabbits fed diets containing probiotics and prebiotics. Livest. Sci. 2013, 157, 184–190. [Google Scholar] [CrossRef]
- Olorunsola, R.; Akinduti, P.; Oso, A.; Akapo, A.; Eruvbetine, D.; Oyekunle, M. Effect of Dietary Supplementation with Probiotics and Prebiotics on Haematological Indices, Serum Chemistry and Gut Salmonella Count of Broilers Sourced from Salmonella-infected Hatcheries in South-west Zone of Nigeria. Am. J. Exp. Agric. 2016, 10, 1–13. [Google Scholar] [CrossRef]
- Seidavi, A.; Tavakoli, M.; Slozhenkina, M.; Gorlov, I.; Hashem, N.M.; Asroosh, F.; Taha, A.E.; El-Hack, M.E.A.; Swelum, A.A. The use of some plant-derived products as effective alternatives to antibiotic growth promoters in organic poultry production: A review. Environ. Sci. Pollut. Res. 2021, 28, 47856–47868. [Google Scholar] [CrossRef]
- Chen, H.-J.; Yang, W.-Y.; Wang, C.-Y. The review on the function of intestinal flora and the regulatory effects of probiotics on the intestinal health of rabbits. In Proceedings of the 2017 2nd international conference on biological sciences and technology (BST 2017), Zhuhai, China, 17–19 November 2017. [Google Scholar] [CrossRef] [Green Version]
- Timmerman, H.; Mulder, L.; Everts, H.; Van Espen, D.; Van Der Wal, E.; Klaassen, G.; Rouwers, S.; Hartemink, R.; Rombouts, F.; Beynen, A. Health and Growth of Veal Calves Fed Milk Replacers With or Without Probiotics. J. Dairy Sci. 2005, 88, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
- Hashem, N.; Soltan, Y.; El-Desoky, N.; Morsy, A.; Sallam, S. Effects of Moringa oleifera extracts and monensin on performance of growing rabbits. Livest. Sci. 2019, 228, 136–143. [Google Scholar] [CrossRef]
- Soltan, Y.A.; Natel, A.S.; Araujo, R.C.; Morsy, A.S.; Abdalla, A.L. Progressive adaptation of sheep to a microencapsulated blend of essential oils: Ruminal fermentation, methane emission, nutrient digestibility, and microbial protein synthesis. Anim. Feed. Sci. Technol. 2018, 237, 8–18. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog. 2018, 10, 1–20. [Google Scholar] [CrossRef]
- Raabis, S.; Li, W.; Cersosimo, L. Effects and immune responses of probiotic treatment in ruminants. Veter. Immunol. Immunopathol. 2019, 208, 58–66. [Google Scholar] [CrossRef]
- El-Desoky, N.; Hashem, N.; Elkomy, A.; Abo-Elezz, Z. Physiological response and semen quality of rabbit bucks supplemented with Moringa leaves ethanolic extract during summer season. Animal 2017, 11, 1549–1557. [Google Scholar] [CrossRef]
- Amer, A.E.; El-Salam, B.; Salem, A.S. Effect of Moringa oleifera leaves extract as a growth factor on viability of some encapsulated probiotic bacteria. World J. Dairy Food Sci. 2014, 9, 86–94. [Google Scholar]
- Staniszewski, A.; Kordowska-Wiater, M. Probiotic and Potentially Probiotic Yeasts—Characteristics and Food Application. Foods 2021, 10, 1306. [Google Scholar] [CrossRef]
- Haghshenas, H.; Badamchizadeh, M.A.; Baradarannia, M. Containment control of heterogeneous linear multi-agent systems. Automatica 2015, 54, 210–216. [Google Scholar] [CrossRef]
- Masalova, O.V.; Lesnova, E.; Shingarova, L.N.; Tunitskaya, V.L.; Ulanova, T.I.; Burkov, A.N.; Kushch, A. The combined application of nucleotide and amino acid sequences of NS3 hepatitis C virus protein, DNA encoding granulocyte macrophage colony-stimulating factor, and inhibitor of regulatory T cells induces effective immune responce against Hepatitis C virus. Mol. Biol. 2012, 46, 473–480. [Google Scholar] [CrossRef]
- El-Desoky, N.I.; Hashem, N.M.; Gonzalez-Bulnes, A.; Elkomy, A.G.; Abo-Elezz, Z.R. Effects of a Nanoencapsulated Moringa Leaf Ethanolic Extract on the Physiology, Metabolism and Reproductive Performance of Rabbit Does during Summer. Antioxidants 2021, 10, 1326. [Google Scholar] [CrossRef]
- Hassanein, E.; Hashem, N.; El-Azrak, K.; Gonzalez-Bulnes, A.; Hassan, G.; Salem, M. Efficiency of GnRH–Loaded Chitosan Nanoparticles for Inducing LH Secretion and Fertile Ovulations in Protocols for Artificial Insemination in Rabbit Does. Animals 2021, 11, 440. [Google Scholar] [CrossRef]
- El-Sayed, S.M.; El-Sayed, H.S.; Salama, H.H.; El-Nor, S.A.A. Improving the Nutritional Value and Extending Shelf Life of Labneh by Adding Moringa oleifera Oil. Int. J. Dairy Sci. 2017, 12, 81–92. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D. A standardised static in vitro digestion method suitable for food–An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panda, A.K.; Rao, S.V.R.; Raju, M.; Sunder, G.S. Effect of Butyric Acid on Performance, Gastrointestinal Tract Health and Carcass Characteristics in Broiler Chickens. Asian-Australas. J. Anim. Sci. 2009, 22, 1026–1031. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Rabbits; National Academy of Sciences: Washington, DC, USA, 1977. [Google Scholar]
- Feldman, M.S. Organizational Routines as a Source of Continuous Change. Organ. Sci. 2000, 11, 611–629. [Google Scholar] [CrossRef] [Green Version]
- Hashem, N.M.; Shehata, M.G. Antioxidant and Antimicrobial Activity of Cleomedroserifolia (Forssk.) Del. and Its Biological Effects on Redox Status, Immunity, and Gut Microflora. Animals 2021, 11, 1929. [Google Scholar] [CrossRef] [PubMed]
- Cotozzolo, E.; Cremonesi, P.; Curone, G.; Menchetti, L.; Riva, F.; Biscarini, F.; Marongiu, M.L.; Castrica, M.; Castiglioni, B.; Miraglia, D.; et al. Characterization of Bacterial Microbiota Composition along the Gastrointestinal Tract in Rabbits. Animals 2020, 11, 31. [Google Scholar] [CrossRef] [PubMed]
- Phuoc, T.L.; Jamikorn, U. Effects of probiotic supplement (Bacillus subtilis and Lactobacillus acidophilus) on feed efficiency, growth performance, and microbial population of weaning rabbits. Asian-Australas. J. Anim. Sci. 2016, 30, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Shurson, G. Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Anim. Feed. Sci. Technol. 2018, 235, 60–76. [Google Scholar] [CrossRef]
- Pozzoni, P.; Riva, A.; Bellatorre, A.G.; Amigoni, M.; Redaelli, E.; Ronchetti, A.; Stefani, M.; Tironi, R.; Molteni, E.E.; Conte, D. Saccharomyces boulardiifor the Prevention of Antibiotic-Associated Diarrhea in Adult Hospitalized Patients: A Single-Center, Randomized, Double-Blind, Placebo-Controlled Trial. Off. J. Am. Coll. Gastroenterol. |ACG 2012, 107, 922–931. [Google Scholar] [CrossRef]
- Anadón, A.; Martínez-Larrañaga, M.R.; Arés, I.; Martínez, M.A. Prebiotics and probiotics: An assessment of their safety and health benefits. In Probiotics, Prebiotics, and Synbiotics: Bioactive Foods in Health Promotion; Academic Press: Cambridge, MA, USA, 2016; Volume 1, p. 3. [Google Scholar]
- Gibson, G.R.; Probert, H.M.; Van Loo, J.; Rastall, R.A.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 2004, 17, 259–275. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, L.; Doriya, K.; Kumar, D.S. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness 2016, 5, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani-Choboghlo, H.; Nikaein, D.; Khosravi, A.-R.; Rahmani, R.; Farahnejad, Z. Effect of microencapsulation on Saccharomyces cerevisiae var. boulardii viability in the gastrointestinal tract and level of some blood biochemical factors in wistar rats. Iran. J. Microbiol. 2019, 11, 160–165. [Google Scholar] [CrossRef]
- Pateiro, M.; Munekata, P.E.S.; Sant’Ana, A.S.; Domínguez, R.; Rodríguez-Lázaro, D.; Lorenzo, J.M. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. Int. J. Food Microbiol. 2021, 337, 108966. [Google Scholar] [CrossRef]
- Airouyuwa, J.O.; Kaewmanee, T. Microencapsulation ofMoringa oleiferaleaf extracts with vegetable protein as wall materials. Food Sci. Technol. Int. 2019, 25, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Đorđević, V.; Balanč, B.; Belščak-Cvitanović, A.; Lević, S.; Trifković, K.; Kalušević, A.; Kostić, I.; Komes, D.; Bugarski, B.; Nedović, V. Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. Food Eng. Rev. 2015, 7, 452–490. [Google Scholar] [CrossRef]
- Arriola, N.D.A.; Chater, P.I.; Wilcox, M.; Lucini, L.; Rocchetti, G.; Dalmina, M.; Pearson, J.P.; Amboni, R.D.D.M.C. Encapsulation of stevia rebaudiana Bertoni aqueous crude extracts by ionic gelation—Effects of alginate blends and gelling solutions on the polyphenolic profile. Food Chem. 2019, 275, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Rosell, J.M.; la Fuente, D.; Fernando, L. Mastitis on rabbit farms: Prevalence and risk factors. Animals 2018, 8, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhama, K.; Karthik, K.; Tiwari, R.; Shabbir, M.Z.; Barbuddhe, S.; Malik, S.V.S.; Singh, R.K. Listeriosis in animals, its public health significance (food-borne zoonosis) and advances in diagnosis and control: A comprehensive review. Veter. Q. 2015, 35, 211–235. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.A.; Ghotaslou, R.; Kordi, S.; Khoramdel, A.; Aeenfar, A.; Kahjough, S.T.; Akbarzadeh, A. Antibacterial and antifungal effects of chitosan nanoparticles on tissue conditioners of complete dentures. Int. J. Biol. Macromol. 2018, 118, 881–885. [Google Scholar] [CrossRef]
- Vieco-Saiz, N.; Belguesmia, Y.; Raspoet, R.; Auclair, E.; Gancel, F.; Kempf, I.; Drider, D. Benefits and Inputs From Lactic Acid Bacteria and Their Bacteriocins as Alternatives to Antibiotic Growth Promoters During Food-Animal Production. Front. Microbiol. 2019, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Devendra, C.; Leng, R.A. Feed Resources for Animals in Asia: Issues, Strategies for Use, Intensification and Integration for Increased Productivity. Asian-Australas. J. Anim. Sci. 2011, 24, 303–321. [Google Scholar] [CrossRef]
- Ndhlala, A.R.; Mulaudzi, R.; Ncube, B.; Abdelgadir, H.A.; Du Plooy, C.P.; Van Staden, J. Antioxidant, Antimicrobial and Phytochemical Variations in Thirteen Moringa oleifera Lam. Cultivars. Molecules 2014, 19, 10480–10494. [Google Scholar] [CrossRef] [Green Version]
- Shanmuganathan, K.; Mirvis, S.E.; Chiu, W.C.; Killeen, K.L.; Hogan, G.J.F.; Scalea, T.M. Penetrating Torso Trauma: Triple-Contrast Helical CT in Peritoneal Violation and Organ Injury—A Prospective Study in 200 Patients. Radiology 2004, 231, 775–784. [Google Scholar] [CrossRef]
- Mountzouris, K.C.; Tsitrsikos, P.; Palamidi, I.; Arvaniti, A.; Mohnl, M.; Schatzmayr, G.; Fegeros, K. Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poult. Sci. 2010, 89, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Belhassen, L.; Koubaa, S.; Wali, M.; Dammak, F. Numerical prediction of springback and ductile damage in rubber-pad forming process of aluminum sheet metal. Int. J. Mech. Sci. 2016, 117, 218–226. [Google Scholar] [CrossRef]
- Corcionivoschi, N.; Drinceanu, D.; Pop, I.M.; Stack, D.; Ştef, L.; Julean, C.; Bourke, B. The effect of probiotics on animal health. Sci. Pap. Anim. Sci. Biotechnol. 2010, 43, 35–41. [Google Scholar]
- Lee, A.J. U-Statistics: Theory and Practice; Routledge: London, UK, 2019. [Google Scholar]
- Gbore, A.; Egbunike, N. Haematotoxicity of dietary fumonisin B1 in growing pigs. ASSET Int. J. Ser. B 2010, 7, 1–8. [Google Scholar]
- Abdelnour, S.; Al-Gabri, N.; Hashem, N.; Gonzalez-Bulnes, A. Supplementation with Proline Improves Haemato-Biochemical and Reproductive Indicators in Male Rabbits Affected by Environmental Heat-Stress. Animals 2021, 11, 373. [Google Scholar] [CrossRef] [PubMed]
Item | Free NP | Loaded NP |
---|---|---|
Size (nm) | 195.10 | 51.38 |
Polydispersity index | 0.457 | 0.177 |
Encapsulation efficiency of Phenolic compounds, % | - | 57.55 |
Encapsulation efficiency of Yeast cells, % | - | 71.17 |
Number of Live Cells, log CFU/mL | Treatment | ||
---|---|---|---|
NCS | LCS | HCS | |
Oral phase | 12.3 ± 0.90 a | 12.60 ± 0.55 | 12.23 ± 0.87 |
Gastric phase | 6.93 ± 1.11 b | 8.63 ± 1.02 ab | 10.40 ± 0.95 a |
Intestinal phase | 4.70 ± 0.81 b | 6.23 ± 1.10 b | 8.70 ± 0.70 a |
Pathogenic Microorganism (Inhibition Zone, mm) | Treatment | ||
---|---|---|---|
NCS | LCS | HCS | |
Escherichia coli BA 12296 | 13.00 ± 1.32 c | 18.00 ± 1.00 b | 26.33 ± 1.04 a |
Listeria monocytogenes ATCC 19116 | 10.00 ± 0.86 c | 18.00 ± 1.00 b | 30.00 ± 1.73 a |
Staphylococcus aureus NCTC 10788 | 11.03 ± 1.26 c | 15.30 ± 1.08 b | 20.00 ± 2.09 a |
Salmonella senftenberg ATCC 8400 | 18.16 ± 0.76 | 0.00 | 0.00 |
Candida albicans ATCC MYA-2876 | 10.00 ± 2.00 c | 15.10 ± 0.95 b | 30.50 ± 2.17 a |
Treatment | Item | ||||||
---|---|---|---|---|---|---|---|
Lymphocytes, % | Monocytes, % | Eosinophil, % | Heterophil, % | WBC, × 103/mL | RBC, × 106/mL | Hemoglobulin, g/dL | |
At day 40 of age | |||||||
CON | 39.90 ± 5.69 | 13.18 ± 2.06 | 12.49 ± 1.92 | 21.24 ± 0.01 | 29.17 ± 0.91 | 2.10 ± 0.08 | 10.16 ± 0.30 |
NCS | 40.84 ± 2.24 | 13.48 ± 0.17 | 11.36 ± 0.06 | 21.25 ± 0.13 | 23.08 ± 0.05 | 2.09 ± 0.21 | 9.58 ± 0.31 |
LCS | 38.27 ± 0.27 | 11.13 ± 0.24 | 11.26 ± 0.47 | 21.86 ± 0.57 | 24.34 ± 1.19 | 2.02 ± 0.36 | 10.08 ± 0.59 |
HCS | 38.37 ± 0.50 | 12.94 ± 0.98 | 11.15 ± 0.69 | 20.61 ± 0.01 | 24.77 ± 1.53 | 1.69 ± 0.04 | 9.74 ± 0.59 |
p-value | 0.418 | 0.472 | 0.762 | 0.318 | 0.356 | 0.729 | 0.860 |
At day 89 of age | |||||||
CON | 42.01 ± 1.32 | 13.22 ± 1.20 | 11.74 ± 0.51 | 22.95 ± 0.18 | 25.97 ± 0.84 | 1.98 ± 0.32 | 10.92 ± 0.66 |
NCS | 41.03 ± 1.38 | 14.04 ± 1.14 | 10.52 ± 0.69 | 21.47 ± 1.59 | 25.07 ± 0.88 | 1.67 ± 0.08 | 10.25 ± 1.54 |
LCS | 43.08 ± 1.32 | 14.28 ± 1.25 | 12.96 ± 1.83 | 23.70 ± 0.43 | 24.01 ± 1.29 | 1.73 ± 0.13 | 11.68 ± 1.27 |
HCS | 40.96 ± 0.62 | 12.98 ± 1.24 | 10.02 ± 0.88 | 21.99 ± 0.33 | 24.55 ± 1.53 | 1.86 ± 0.06 | 11.08 ± 0.97 |
p-value | 0.581 | 0.827 | 0.306 | 0.316 | 0.690 | 0.632 | 0.853 |
Treatment | Item | |||||
---|---|---|---|---|---|---|
Total Protein, g/dL | Albumin, g/dL | Globulin, g/dL | Glucose, mg/dL | Malondialdehyde, nmol/L | Total Antioxidant, Mm/L | |
At day 40 of age | ||||||
CON | 6.25 ± 0.06 | 4.37 ± 0.32 | 1.88 ± 0.25 | 97.27 ± 0.92 | 5.93 ± 0.09 | 0.493 ± 0.57 |
NCS | 5.57 ± 0.35 | 3.52 ± 0.3 | 2.04 ± 0.05 | 81.97 ± 1.23 | 4.78 ± 0.13 | 0.437 ± 5.53 |
LCS | 5.97 ± 0.20 | 4.43 ± 0.22 | 1.55 ± 0.02 | 82.48 ± 0.27 | 5.53 ± 0.18 | 0.424 ± 1.76 |
HCS | 4.98 ± 0.14 | 3.07 ± 0.27 | 1.91 ± 0.13 | 87.61 ± 1.16 | 5.69 ± 0.03 | 0.424 ± 1.97 |
p-value | 0.393 | 0.202 | 0.457 | 0.416 | 0.379 | 0.508 |
At day 89 of age | ||||||
CON | 5.21 ± 0.01 b | 3.37 ± 0.14 b | 1.84 ± 0.27 | 91.06 ± 1.09 | 5.02 ± 0.25 a | 0.446 ± 2.94 |
NCS | 5.52 ± 0.27 b | 4.82 ± 0.18 a | 1.5 ± 0.21 | 93.73 ± 1.09 | 2.99 ± 0.17 b | 0.443 ± 9.99 |
LCS | 6.03 ± 0.1 ab | 4.23 ± 0.34 a | 1.80 ± 0.29 | 93.05 ± 1.11 | 3.08 ± 0.08 b | 0.444 ± 8.49 |
HCS | 6.43 ± 0.27 a | 4.02 ± 0.29 ab | 1.61 ± 0.54 | 94.72 ± 1.06 | 3.13 ± 0.32 b | 0.430 ± 1.76 |
p-value | 0.045 | 0.023 | 0.888 | 0.186 | 0.005 | 0.360 |
Treatment | Item | ||||
---|---|---|---|---|---|
Immunoglobulin G, mg/dL | Immunoglobulin E, mg/dL | Immunoglobulin A, mg/dL | Interleukin-l, pg/mL | Insulin-like Growth Factor-l, ng/mL | |
At day 40 of age | |||||
CON | 1146.7 ± 6.38 | 7.99 ± 0.28 | 99.33 ± 1.42 | 20.99 ± 2.02 | 168.01 ± 0.36 |
NCS | 963.1 ± 4.84 | 7.66 ± 0.52 | 87.92 ± 2.02 | 17.58 ± 1.98 | 158.92 ± 4.55 |
LCS | 967 ± 1.97 | 7.39 ± 1.61 | 85.77 ± 0.56 | 20.79 ± 1.19 | 170.33 ± 5.79 |
HCS | 955.4 ± 13.00 | 8.91 ± 0.72 | 83.46 ± 0.84 | 17.55 ± 0.60 | 155.74 ± 4.94 |
p-value | 0.357 | 0.035 | 0.484 | 0.542 | 0.222 |
At day 89 of age | |||||
CON | 986.50 ± 3.84 | 11.44 ± 0.78 a | 95.31 ± 1.55 | 18.66 ± 0.13 | 163.05 ± 3.01 b |
NCS | 965.58 ± 5.35 | 8.13 ± 1.71 ab | 89.30 ± 3.02 | 19.83 ± 2.33 | 159.46 ± 2.64 ab |
LCS | 973.99 ± 13.38 | 9.79 ± 0.65 ab | 90.65 ± 4.73 | 18.97 ± 1.24 | 157.30 ± 5.42 ab |
HCS | 983.34 ± 3.98 | 5.97 ± 0.65 b | 85.30 ± 2.35 | 19.33 ± 1.61 | 169.09 ± 2.49 a |
p-value | 0.285 | 0.088 | 0.238 | 0.357 | 0.012 |
Item | Treatments | ||||
---|---|---|---|---|---|
CON | NCS | LCS | HCS | ||
Type of Microflora, log CFU/g | |||||
Intestinal microflora | |||||
Yeast | 4.83 ± 0.65 d | 6.20 ± 0.20 c | 7.40 ± 0.72 b | 8.80 ± 0.3 a | |
Lactic acid bacteria | 6.53 ± 0.50 c | 7.30 ± 0.75 b | 8.16 ± 0.47 a, b | 8.53 ± 0.55 a | |
Coliform | 6.30 ± 0.70 a | 5.40 ± 0.45 ab | 5.13 ± 0.40 b | 3.20 ± 0.26 c | |
Salmonella | 5.96 ± 0.55 a | 4.90 ± 0.96 ab | 4.00 ± 0.10 cd | 3.46 ± 0.56 d | |
Cecal microflora | |||||
Yeast | 3.06 ± 0.51 c | 4.87 ± 0.31 b | 5.73 ± 0.86 b | 7.03 ± 0.58 a | |
Lactic acid bacteria | 5.16 ± 0.35 d | 6.37 ± 0.64 c | 7.20 ± 0.52 b | 8.46 ± 0.32 a | |
Coliform | 8.13 ± 0.61 a | 7.10 ± 0.69 b | 6.00 ± 0.50 c | 5.16 ± 0.47 d | |
Salmonella | 7.63 ± 0.86 a | 6.63 ± 0.98 b | 4.96 ± 0.65 c | 3.83 ± 0.84 d | |
Length of small intestine and cecum, and fecal score | |||||
Small intestine length (Cm) | 285 ± 30.36 b | 280 ± 10.15 b | 348 ± 17.58 a | 331.67 ± 21.69 a | |
Cecum length (Cm) | 95.00 ± 7.56 c | 107.07 ± 11.18 b | 112.67 ± 8.92 a | 114.50 ± 9.34 a | |
Fecal score | 1.15 ± 0.05 ab | 1.99 ± 0.03 a | 1.06 ± 0.04 b | 1.04 ± 0.02 b |
Item | Age of Rabbits | |||
---|---|---|---|---|
Live BW, g | BW40 | BW54 | BW68 | BW89 |
CON | 846 ± 25.87 | 1046.50 ± 29.07 | 1253.50 ± 65.09 | 1761.67 ± 49.26 b |
NCS | 847 ± 28.87 | 1018 ± 28.10 | 1268.50 ± 48.93 | 1853.89 ± 42.02 ab |
LCS | 848 ± 0.50 | 1028.50 ± 48.45 | 1265 ± 54.32 | 1835.50 ± 47.15 ab |
HCS | 848 ± 6.09 | 1053 ± 44.30 | 1358 ± 39.78 | 1923 ± 50.96 a |
p-value | 0.995 | 0.817 | 0.229 | 0.021 |
BW gain, g | 40–54 | 54–68 | 68–89 | 40–89 |
CON | 190.50 ± 28.13 | 207 ± 40.79 b | 508.89 ± 47.51 | 914.44 ± 51.61 b |
NCS | 170.50 ± 27.88 | 250.50 ± 19.37 ab | 560 ± 34.09 | 995 ± 56.85 ab |
LCS | 228.75 ± 15.08 | 236.50 ± 34.59 ab | 570.50 ± 18.32 | 987.50 ± 59.76 ab |
HCS | 204.50 ± 19.69 | 305 ± 20.43 a | 565 ± 42.31 | 1074.50 ± 44.10 a |
p-value | 0.428 | 0.002 | 0.653 | 0.017 |
FI, g | 40–54 | 54–68 | 68–89 | 40–89 |
CON | 1172 ± 67.78 ab | 1215 ± 67.84 | 2218.89 ± 26.83 b | 4881.67 ± 50.52 a, b |
NCS | 1161 ± 15.37 ab | 1224.20 ± 27.64 | 2260.56 ± 14.54 ab | 4960.56 ± 17.47 a |
LCS | 1025.50 ± 23.24 b | 1224.50 ± 10.87 | 2275 ± 0.01 a | 4840 ± 14.59 b |
HCS | 1177 ± 8.80 a | 1217.50 ± 27.48 | 2275 ± 0.01 a | 4962.50 ± 27.48 a |
p-value | <0.001 | 0.779 | 0.023 | 0.018 |
FCR | 40–54 | 54–68 | 68–89 | 40–89 |
CON | 6.03 ± 0.47 a | 6.23 ± 1.19 | 4.99 ± 0.81 | 5.47 ± 0.26 a |
NCS | 6.52 ± 0.81 a | 5.10 ± 0.33 | 4.27 ± 0.45 | 5.08 ± 0.23 ab |
LCS | 4.62 ± 0.33 b | 5.57 ± 0.92 | 4.02 ± 0.12 | 4.97 ± 0.39 ab |
HCS | 5.52 ± 0.34 ab | 4.14 ± 0.25 | 4.36 ± 0.51 | 4.51 ± 0.16 b |
p-value | 0.135 | 0.291 | 0.638 | 0.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashem, N.M.; Hosny, N.S.; El-Desoky, N.I.; Shehata, M.G. Effect of Nanoencapsulated Alginate-Synbiotic on Gut Microflora Balance, Immunity, and Growth Performance of Growing Rabbits. Polymers 2021, 13, 4191. https://doi.org/10.3390/polym13234191
Hashem NM, Hosny NS, El-Desoky NI, Shehata MG. Effect of Nanoencapsulated Alginate-Synbiotic on Gut Microflora Balance, Immunity, and Growth Performance of Growing Rabbits. Polymers. 2021; 13(23):4191. https://doi.org/10.3390/polym13234191
Chicago/Turabian StyleHashem, Nesrein M., Nourhan S. Hosny, Nagwa I. El-Desoky, and Mohamed G. Shehata. 2021. "Effect of Nanoencapsulated Alginate-Synbiotic on Gut Microflora Balance, Immunity, and Growth Performance of Growing Rabbits" Polymers 13, no. 23: 4191. https://doi.org/10.3390/polym13234191